Skip to main content Accessibility help

Empirical versus exact numerical quasilinear analysis of electromagnetic instabilities driven by temperature anisotropy

  • PETER H. YOON (a1) (a2), JUNG JOON SEOUGH (a1), KHAN HYUK KIM (a1) and DONG HUN LEE (a1)


In the present paper, quasilinear development of anisotropy-driven electromagnetic instabilities is computed on the basis of recently formulated empirical wave dispersion relation and compared against exact numerical calculation based upon transcendental plasma dispersion function and exact numerical roots. Upon comparison with the exact method it is demonstrated that the empirical model provides reasonable results. The present findings may be relevant to space physical application, as the present paper provides a useful short-cut research method for self-consistent analysis of temporal development of anisotropy-driven instabilities.



Hide All
Albert, J. M. 2005 Evaluation of quasi-linear diffusion coefficients for whistler mode waves in a plasma with arbitrary density ratio. J. Geophys. Res. 110, A03218.
Cuperman, S., Gomberoff, N. L. and Sternlieb, A. 1975 Absolute maximum growth rates and enhancement of unstable electromagnetic ion-cyclotron waves in mixed warm-cold plasmas. J. Plasma Phys. 13, 259.
Davidson, R. C. and Ogden, J. M. 1975 Electromagnetic ion cyclotron instability driven by ion energy anisotropy in high-beta plasmas. Phys. Fluids 18, 1045.
Glaubert, S. A. and Horne, R. B. 2005 Calculation of pitch angle and energy diffusion coefficients with the PADIE code. J. Geophys. Res. 110, A04206.
Kennel, C. F. and Petschek, H. E. 1966 Limit on stably trapped particle flux. J. Geophys. Res. 71, 1.
Krall, N. A. and Trivelpiece, A. W. 1973 Principles of Plasma Physics. New York, NY: McGraw-Hill.
Lui, A. T. Y., McEntire, R. W. and Krimigis, S. M. 1987 Evolution of the ring current during two geomagnetic storms. J. Geophys. Res. 92, 7459.
Lyons, L. R., Thorne, R. M. and Kennel, C. F. 1972 Pitch-angle diffusion of radiation belt electrons within the plasmasphere. J. Geophys. Res. 77, 3455.
Schulz, M. and Lanzerotti, L. J. 1974 Particle Diffusion in the Radiation Belts, Physics and Chemistry in Space, Vol. 7. New York: Springer-Verlag.
Seough, J. J. and Yoon, P. H. 2009 Analytic models of warm plasma dispersion relations. Phys. Plasmas 16, 092103.
Summers, D. 2005 Quasi-linear diffusion coefficients for field-aligned electromagnetic waves with applications to the magnetosphere. J. Geophys. Res. 110, A08213.
Summers, D. and Ma, C. 2000 A model for generating relativistic electrons in the Earth's inner magnetosphere based on gyroresonant wave-particle interactions. J. Geophys. Res. 105, 2625.
Summers, D. and Thorne, R. M. 2003 Relativistic electron pitch-angle scattering by electromagnetic ion cyclotron waves during geomagnetic storms. J. Geophys. Res. 108 (A4), 1143.
Summers, D., Ni, B. and Meredith, N. P. 2007 Timescales for radiation belt electron acceleration and loss due to resonant wave-particle interactions: 1. Theory. J. Geophys. Res. 112, A04206, A04207.
Xiao, F. 2006 Modelling energetic particles by a relativistic kappa-loss-cone distribution function in plasmas. Plasma Phys. Control. Fusion 48, 203.
Xiao, F., Zhou, Q., Zheng, H. and Wang, S. 2006 Whistler instability threshold condition of energetic electrons by kappa distribution in space plasmas. J. Geophys. Res. 111, A08208.
Xiao, F., Zhou, Q., He, H., Zheng, H. and Wang, S. 2007 Electromagnetic ion cyclotron waves instability threshold condition of suprathermal protons by kappa distribution. J. Geophys. Res. 112, A07219.
Yoon, P. H. 1992 Quasilinear evolution of Alfvén-ion-cyclotron and mirror instabilities driven by ion temperature anisotropy. Phys. Fluids B 4, 3627.
Yoon, P. H., Seough, J. J., Khim, K. K., Kim, H., Kwon, H.-J., Park, J., Parkh, S. and Park, K. S. 2010 Analytic model of electromagnetic ion-cyclotron anisotropy instability. Phys. Plasmas 17, 082111.
Yoon, P. H., Seough, J. J., Lee, J., An, J. and Lee, J. O. in press Empirical model of whistler anisotropy instability. Phys. Plasmas (submitted).
MathJax is a JavaScript display engine for mathematics. For more information see


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed