Hostname: page-component-8448b6f56d-mp689 Total loading time: 0 Render date: 2024-04-23T08:24:49.755Z Has data issue: false hasContentIssue false

Electron-acoustic instability driven by a field-aligned hot electron beam

Published online by Cambridge University Press:  13 March 2009

R. Bharuthram
Affiliation:
Department Physics, University of Durban-Westville, Private Bag X54001, Durban 4000, and Plasma Physics Research Institute, University of Natal, King George V Avenue, Durban 4001, South Africa

Abstract

Using kinetic theory, the electron-acoustic instability is investigated in a three-component plasma consisting of a hot electron beam and stationary cool electrons and ions. In the model considered here both the electrons and ions are magnetized, with the beam drift along the external magnetic field. The dependence of the growth rate on plasma parameters, such as electron-beam density, electron-beam speed, magnetic field strength and propagation angle, is studied. In addition, the effects of anisotropies in the velocity distributions of the hot electron beam and the cool electrons on the instability growth rate are examined.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Arefev, V. I. 1970 Soviet Phys. Tech. Phys, 14, 1487.Google Scholar
Ashour-Abdalla, M. & Okuda, H. 1986 Geophys. Res. Lett. 13, 366.CrossRefGoogle Scholar
Buti, B. & Lakhina, G. S. 1988 Geophys. Res. Lett. 15, 1149.CrossRefGoogle Scholar
Clark, D. H., Raitt, W. J. & Willmore, A. P. 1973 J. Atmos. Terr. Phys. 35, 63.CrossRefGoogle Scholar
Farina, D., Lontano, M. & Pozzoli, R. 1982 Phys. Lett 90A, 467.CrossRefGoogle Scholar
Gary, S. P. 1987 Phys. Fluids, 30, 2745.CrossRefGoogle Scholar
Gary, S. P. & Sanderson, J. J. 1970 J. Plasma Phys. 4, 739.CrossRefGoogle Scholar
Gary, S. P. & Tokar, R. L. 1985 Phys. Fluids, 28, 2439.CrossRefGoogle Scholar
Gurnett, D. A. & Frank, L. A. 1978 J. Geophys. Res. 83, 58.CrossRefGoogle Scholar
Lashmore-Davies, C. N. & Martin, T. J. 1973 Nucl. Fusion, 13, 193.CrossRefGoogle Scholar
Mace, R. L. & Hellberg, M. A. 1990 Proceedings of 17th EPS Conference on Controlled Fusion and Plasma Heating, Part IV, p. 1754.Google Scholar
Melrose, D. B. 1973 Aust. J. Phys. 26, 229.CrossRefGoogle Scholar
Palmer, I. D. 1981 J. Geophys. Res. 86, 4461.CrossRefGoogle Scholar
Sizonenko, V. I. 1976 Plasma Phys. 18, 541.CrossRefGoogle Scholar
Schriver, D. & Ashour-Abdalla, M. 1987 J. Geophys. Res. 92, 5807.CrossRefGoogle Scholar
Tokar, R. L. & Gary, S. P. 1984 Geophys. Res. Lett. 11, 1180.CrossRefGoogle Scholar
Watanabe, K. & Taniuti, T. 1977 J. Phys. Soc. Japan, 43, 1819.CrossRefGoogle Scholar
Winglee, R. M. 1983 Plasma Phys. 25, 217.CrossRefGoogle Scholar