Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-09T03:36:55.150Z Has data issue: false hasContentIssue false

Electron mirror instability: particle-in-cell simulations

Published online by Cambridge University Press:  04 July 2018

Petr Hellinger*
Affiliation:
Astronomical Institute, CAS, Bocni II/1401, CZ-14000 Prague, Czech Republic Institute of Atmospheric Physics, CAS, Bocni II/1401, CZ-14000 Prague, Czech Republic
Štěpán Štverák
Affiliation:
Astronomical Institute, CAS, Bocni II/1401, CZ-14000 Prague, Czech Republic Institute of Atmospheric Physics, CAS, Bocni II/1401, CZ-14000 Prague, Czech Republic
*
Email address for correspondence: Petr.Hellinger@asu.cas.cz

Abstract

Properties of the electron mirror instability and its competition with the usually dominant whistler (electron cyclotron) instability driven by the electron perpendicular temperature anisotropy are investigated at the linear level using a Vlasov linear solver and at the nonlinear level using a two-dimensional full particle code. The simulation results show that the linearly subdominant electron mirror instability may compete at the nonlinear level with the whistler instability and may even eventually become the dominant mode that generates robust non-propagating sub-ion-scale coherent structures in the form of magnetic peaks.

Type
Research Article
Copyright
© Cambridge University Press 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahmadi, N., Germaschewski, K. & Raeder, J. 2017 Simulation of magnetic holes formation in the magnetosheath. Phys. Plasmas 24, 122121.CrossRefGoogle Scholar
Balikhin, M. A., Sibeck, D. G., Runov, A. & Walker, S. N. 2012 Magnetic holes in the vicinity of dipolarization fronts: mirror or tearing structures? J. Geophys. Res. 117, A08229.Google Scholar
Basu, B. & Coppi, B. 1984 Theory of field-swelling instability in anisotropic plasmas. Phys. Rev. Lett. 27, 11871193.Google Scholar
Califano, F., Hellinger, P., Kuznetsov, E., Passot, T., Sulem, P.-L. & Trávníček, P. M. 2008 Nonlinear mirror mode dynamics: simulations and modeling. J. Geophys. Res. 113, A08219.Google Scholar
Decyk, V. K. 2007 UPIC: a framework for massively parallel particle-in-cell codes. Comput. Phys. Commun. 177, 9597.Google Scholar
Enríquez-Rivera, O., Blanco-Cano, X., Russell, C. T., Jian, L. K., Luhmann, J. G., Simunac, K. D. C. & Galvin, A. B. 2013 Mirror-mode storms inside stream interaction regions and in the ambient solar wind: a kinetic study. J. Geophys. Res. 118, 1728.Google Scholar
Gary, S. P. 1993 Theory of Space Plasma Microinstabilities. Cambridge University Press.Google Scholar
Gary, S. P. & Karimabadi, H. 2006 Linear theory of electron temperature anisotropy instabilities: whistler, mirror, and Weibel. J. Geophys. Res. 111, A11224.Google Scholar
Gary, S. P., Liu, K. & Winske, D. 2011 Whistler anisotropy instability at low electron $\unicode[STIX]{x1D6FD}$ : particle-in-cell simulations. Phys. Plasmas 18, 082902.CrossRefGoogle Scholar
Ge, Y. S., McFadden, J. P., Raeder, J., Angelopoulos, V., Larson, D. & Constantinescu, O. D. 2011 Case studies of mirror-mode structures observed by THEMIS in the near-Earth tail during substorms. J. Geophys. Res. 116, A01209.Google Scholar
Génot, V., Broussillou, L., Budnik, E., Hellinger, P., Trávníček, P. M., Lucek, E. & Dandouras, I. 2011 Timing mirror structures observed by cluster with a magnetosheath flow model. Ann. Geophys. 29, 18491860.Google Scholar
Génot, V., Budnik, E., Hellinger, P., Passot, T., Belmont, G., Trávníček, P. M., Sulem, P. L., Lucek, E. & Dandouras, I. 2009 Mirror structures above and below the linear instability threshold: cluster observations, fluid model and hybrid simulations. Ann. Geophys. 27, 601615.Google Scholar
Hasegawa, A. 1969 Drift mirror instability in the magnetosphere. Phys. Fluids 12, 26422650.Google Scholar
Hellinger, P. 2007 Comment on the linear mirror instability near the threshold. Phys. Plasmas 14, 082105.Google Scholar
Hellinger, P. 2017 Proton fire hose instabilities in the expanding solar wind. J. Plasma Phys. 83, 705830105.Google Scholar
Hellinger, P., Kuznetsov, E. A., Passot, T., Sulem, P. L. & Trávníček, P. M. 2009 Mirror instability: from quasi-linear diffusion to coherent structures. Geophys. Res. Lett. 36, L06103.CrossRefGoogle Scholar
Hellinger, P., Landi, S., Matteini, L., Verdini, A. & Franci, L. 2017 Mirror instability in a turbulent plasma. Astrophys. J. 838, 158.Google Scholar
Hellinger, P., Trávníček, P., Kasper, J. C. & Lazarus, A. J. 2006 Solar wind proton temperature anisotropy: linear theory and WIND/SWE observations. Geophys. Res. Lett. 33, L09101.Google Scholar
Hellinger, P., Trávníček, P., Mangeney, A. & Grappin, R. 2003a Hybrid simulations of the expanding solar wind: temperatures and drift velocities. Geophys. Res. Lett. 30, 1211.CrossRefGoogle Scholar
Hellinger, P., Trávníček, P., Mangeney, A. & Grappin, R. 2003b Hybrid simulations of the magnetosheath compression: marginal stability path. Geophys. Res. Lett. 30, 1959.Google Scholar
Hellinger, P. & Trávníček, P. M. 2011 Proton core-beam system in the expanding solar wind: hybrid simulations. J. Geophys. Res. 116, A11101.Google Scholar
Hellinger, P., Trávníček, P. M., Decyk, V. K. & Schriver, D. 2014 Oblique electron fire hose instability: particle-in-cell simulations. J. Geophys. Res. 119, 5968.Google Scholar
Hewett, D. W. 1985 Elimination of electromagnetic radiation in plasma simulation – the DARWIN or magnetoinductive approximation. Space Sci. Rev. 42, 2940.CrossRefGoogle Scholar
Joy, S. P., Kivelson, M. G., Walker, R. J., Khurana, K. K., Russell, C. T. & Paterson, W. R. 2006 Mirror mode structures in the Jovian magnetosheath. J. Geophys. Res. 111, A12212.Google Scholar
Kennel, C. F. & Engelmann, F. 1966 Velocity space diffusion from weak plasma turbulence in a magnetic field. Phys. Fluids 9, 23772388.CrossRefGoogle Scholar
Kim, H. P., Hwang, J., Seough, J. J. & Yoon, P. H. 2017 Electron temperature anisotropy regulation by whistler instability. J. Geophys. Res. 122, 44104419.Google Scholar
Komarov, S. V., Churazov, E. M., Kunz, M. W. & Schekochihin, A. A. 2016 Thermal conduction in a mirror-unstable plasma. Mon. Not. R. Astron. Soc. 460, 467477.Google Scholar
Kunz, M. W., Schekochihin, A. A. & Stone, J. M. 2014 Firehose and mirror instabilities in a collisionless shearing plasma. Phys. Rev. Lett. 112, 205003.Google Scholar
Kuznetsov, E. A., Passot, T. & Sulem, P. L. 2007a Nonlinear theory of mirror instability near threshold. JETP Lett. 86, 637642.CrossRefGoogle Scholar
Kuznetsov, E. A., Passot, T. & Sulem, P.-L. 2007b Dynamical model for nonlinear mirror modes near threshold. Phys. Rev. Lett. 98, 235003.CrossRefGoogle ScholarPubMed
Migliuolo, S. 1986 The field swelling and mirror modes: connection of the two instabilities. J. Geophys. Res. 91, 79817988.CrossRefGoogle Scholar
Noreen, N., Yoon, P. H., López, R. A. & Zaheer, S. 2017 Electron contribution in mirror instability in quasi-linear regime. J. Geophys. Res. 122, 69786990.Google Scholar
Pierrard, V., Lazar, M., Poedts, S., Štverák, Š., Maksimovic, M. & Trávnícek, P. M. 2016 The electron temperature and anisotropy in the solar wind. Comparison of the core and halo populations. Solar Phys. 291, 21652179.Google Scholar
Riquelme, M. A., Quataert, E. & Verscharen, D. 2015 Particle-in-cell simulations of continuously driven mirror and ion cyclotron instabilities in high beta astrophysical and heliospheric plasmas. Astrophys. J. 800, 27.Google Scholar
Roberg-Clark, G. T., Drake, J. F., Reynolds, C. S. & Swisdak, M. 2018 Suppression of electron thermal conduction by whistler turbulence in a sustained thermal gradient. Phys. Rev. Lett. 120, 035101.CrossRefGoogle Scholar
Schriver, D., Ashour-Abdalla, M., Coroniti, F. V., LeBoeuf, J. N., Decyk, V., Travnicek, P., Santolík, O., Winningham, D., Pickett, J. S., Goldstein, M. L. et al. 2010 Generation of whistler mode emissions in the inner magnetosphere: an event study. J. Geophys. Res. 115, A00F17.Google Scholar
Shaaban, S. M., Lazar, M., Astfalk, P. & Poedts, S. 2018 Stimulated mirror instability from the interplay of anisotropic protons and electrons, and their suprathermal populations. J. Geophys. Res. 123, 17541766.Google Scholar
Shoji, M., Omura, Y., Tsurutani, B. T., Verkhoglyadova, O. P. & Lembege, B. 2009 Mirror instability and L-mode electromagnetic ion cyclotron instability: competition in the Earth’s magnetosheath. J. Geophys. Res. 114, A10203.Google Scholar
Sironi, L. & Narayan, R. 2015 Electron heating by the ion cyclotron instability in collisionless accretion flows. I. Compression-driven instabilities and the electron heating mechanism. Astrophys. J. 800, 88.CrossRefGoogle Scholar
Soucek, J., Lucek, E. & Dandouras, I. 2008 Properties of magnetosheath mirror modes observed by Cluster and their responses to changes in plasma parameters. J. Geophys. Res. 113, A04203.Google Scholar
Stevens, M. L. & Kasper, J. C. 2007 A scale-free analysis of magnetic holes at 1 AU. J. Geophys. Res. 112, A05109.Google Scholar
Stix, T. H. 1962 The Theory of Plasma Waves. McGraw-Hill.Google Scholar
Štverák, Š., Maksimovic, M., Trávníček, P. M., Marsch, E., Fazakerley, A. N. & Scime, E. E. 2009 Radial evolution of nonthermal electron populations in the low-latitude solar wind: Helios, Cluster, and Ulysses observations. J. Geophys. Res. 114, A05104.Google Scholar
Sundberg, T., Burgess, D. & Haynes, C. T. 2015 Properties and origin of subproton-scale magnetic holes in the terrestrial plasma sheet. J. Geophys. Res. 120, 26002615.Google Scholar
Trávníček, P., Hellinger, P., Taylor, M. G. G. T., Escoubet, C. P., Dandouras, I. & Lucek, E. 2007 Magnetosheath plasma expansion: hybrid simulations. Geophys. Res. Lett. 34, L15104.CrossRefGoogle Scholar
Tsurutani, B. T., Lakhina, G. S., Verkhoglyadova, O. P., Echer, E., Guarnieri, F. L., Narita, Y. & Constantinescu, D. O. 2011 Magnetosheath and heliosheath mirror mode structures, interplanetary magnetic decreases, and linear magnetic decreases: differences and distinguishing features. J. Geophys. Res. 116, A02103.Google Scholar
Winterhalter, D., Neugebauer, M., Goldstein, B. E., Smith, E. J., Tsurutani, B. T., Bame, S. J. & Balogh, A. 1995 Magnetic holes in the solar wind and their relation to mirror mode structures. Space Sci. Rev. 72, 201204.CrossRefGoogle Scholar
Yao, S. T., Shi, Q. Q., Guo, R. L., Yao, Z. H., Tian, A. M., Degeling, A. W., Sun, W. J., Liu, J., Wang, X. G., Zong, Q. G. et al. 2018 Magnetospheric multiscale observations of electron scale magnetic peak. Geophys. Res. Lett. 45, 527537.Google Scholar
Yao, S. T., Wang, X. G., Shi, Q. Q., Pitkänen, T., Hamrin, M., Yao, Z. H., Li, Z. Y., Ji, X. F., De Spiegeleer, A., Xiao, Y. C. et al. 2017 Observations of kinetic-size magnetic holes in the magnetosheath. J. Geophys. Res. 122, 19902000.Google Scholar
Zhang, X.-J., Artemyev, A., Angelopoulos, V. & Horne, R. B. 2017 Kinetics of sub-ion scale magnetic holes in the near-Earth plasma sheet. J. Geophys. Res. 122, 1030410317.Google Scholar