Skip to main content Accessibility help

Electromagnetic zonal flow residual responses

  • Peter J. Catto (a1), Felix I. Parra (a2) (a3) and István Pusztai (a4)


The collisionless axisymmetric zonal flow residual calculation for a tokamak plasma is generalized to include electromagnetic perturbations. We formulate and solve the complete initial value zonal flow problem by retaining the fully self-consistent axisymmetric spatial perturbations in the electric and magnetic fields. Simple expressions for the electrostatic, shear and compressional magnetic residual responses are derived that provide a fully electromagnetic test of the zonal flow residual in gyrokinetic codes. Unlike the electrostatic potential, the parallel vector potential and the parallel magnetic field perturbations need not relax to flux functions for all possible initial conditions.


Corresponding author

Email address for correspondence:


Hide All
Belli, E. A.2006 Studies of numerical algorithms for gyrokinetics and the effects of shaping on plasma turbulence. PhD thesis, Princeton University.
Biglari, H., Diamond, P. H. & Terry, P. W. 1990 Influence of sheared poloidal rotation on edge turbulence. Phys. Fluids B 2 (1), 14.
Catto, P. J. 1978 Linearized gyro-kinetics. Plasma Phys. 20 (7), 719.
Dimits, A. M., Bateman, G., Beer, M. A., Cohen, B. I., Dorland, W., Hammett, G. W., Kim, C., Kinsey, J. E., Kotschenreuther, M., Kritz, A. H. et al. 2000 Comparisons and physics basis of tokamak transport models and turbulence simulations. Phys. Plasmas 7 (3), 969983.
Dimits, A. M., Williams, T. J., Byers, J. A. & Cohen, B. I. 1996 Scalings of ion-temperature-gradient-driven anomalous transport in tokamaks. Phys. Rev. Lett. 77, 7174.
Gradshteyn, I. S. & Ryzhik, I. M. 2007 Table of Integrals, Series, and Products, 7th edn. Elsevier/Academic, 182, 186, 187, and 615–616.
Helander, P. & Sigmar, D. J. 2005 Collisional Transport in Magnetized Plasmas. pp. 126127. Cambridge University Press.
Hinton, F. L. & Rosenbluth, M. N. 1999 Dynamics of axisymmetric $E\times B$ and poloidal flows in tokamaks. Plasma Phys. Control. Fusion 41 (3A), A653A662.
Jenko, F., Dorland, W., Kotschenreuther, M. & Rogers, B. N. 2000 Electron temperature gradient driven turbulence. Phys. Plasmas 7 (5), 19041910.
Kagan, G. & Catto, P. J. 2008 Arbitrary poloidal gyroradius effects in tokamak pedestals and transport barriers. Plasma Phys. Control. Fusion 50 (8), 085010.
Kagan, G. & Catto, P. J. 2009 Zonal flow in a tokamak pedestal). Phys. Plasmas 16 (5), 056105.
Monreal, P., Calvo, I., Sánchez, E., Parra, F. I., Bustos, A., Könies, A., Kleiber, R. & Görler, T. 2016 Residual zonal flows in tokamaks and stellarators at arbitrary wavelengths. Plasma Phys. Control. Fusion 58 (4), 045018.
Rosenbluth, M. N. & Hinton, F. L. 1998 Poloidal flow driven by ion-temperature-gradient turbulence in tokamaks. Phys. Rev. Lett. 80, 724727.
Shafranov, V. D. 1966 Reviews of Plasma Physics (ed. Leontovich, M. A.), vol. 2, p. 103. Consultants Bureau.
Sugama, H. & Watanabe, T.-H. 2005 Dynamics of zonal flows in helical systems. Phys. Rev. Lett. 94, 115001.
Terry, P. W. 2000 Suppression of turbulence and transport by sheared flow. Rev. Mod. Phys. 72, 109165.
Terry, P. W., Pueschel, M. J., Carmody, D. & Nevins, W. M. 2013 The effect of magnetic flutter on residual flow. Phys. Plasmas 20 (11), 112502.
Winsor, N., Johnson, J. L. & Dawson, J. M. 1968 Geodesic acoustic waves in hydromagnetic systems. Phys. Fluids 11 (11), 24482450.
Xiao, Y. & Catto, P. J. 2006a Plasma shaping effects on the collisionless residual zonal flow level. Phys. Plasmas 13 (8), 082307.
Xiao, Y. & Catto, P. J. 2006b Short wavelength effects on the collisionless neoclassical polarization and residual zonal flow level. Phys. Plasmas 13 (10), 102311.
Xiao, Y., Catto, P. J. & Dorland, W. 2007a Effects of finite poloidal gyroradius, shaping, and collisions on the zonal flow residual. Phys. Plasmas 14 (5), 055910-6.
Xiao, Y., Catto, P. J. & Molvig, K. 2007b Collisional damping for ion temperature gradient mode driven zonal flow. Phys. Plasmas 14 (3), 032302.
MathJax is a JavaScript display engine for mathematics. For more information see



Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed