Skip to main content Accessibility help

Eikonal-Glauber Thomas–Fermi model for atomic collisions with many-electron atoms for plasma applications

  • Myoung-Jae Lee (a1) (a2) and Young-Dae Jung (a3) (a4)


We have derived the universal eikonal-Glauber Thomas–Fermi model for atomic collision cross-sections with many-electron atoms, such as iron and tungsten atoms, including the influence of atomic screening in fusion devices and plasma technologies. The eikonal-Glauber method is employed to obtain the analytic expressions for the effective atomic charge, the scattering phase shift and the atomic cross-section in terms of the atomic form factor and the Mott–Massey screening parameter. The result shows that the effective atomic charge would be the same as the case of the net nuclear charge for the large momentum transfer domain and becomes zero without momentum transfer due to the influence of bound atomic electrons. It is shown that the eikonal scattering phase shift and the total eikonal-Glauber scattering cross-section increase with increasing charge number $Z$ of the nucleus of the target atom. It is also found that the charge dependence of the total eikonal-Glauber scattering cross-section decreases with an increase of the scaled collision energy since the atomic form factor is small for large collision energies.



Hide All
Akbari-Moghanjoughi, M. 2013 Shukla–Eliasson attractive force: revisited. J. Plasma Phys. 79, 189.
Akbari-Moghanjoughi, M. 2014a Coupled Langmuir oscillations in 2-dimensional quantum plasmas. Phys. Plasmas 21, 032110.
Akbari-Moghanjoughi, M. 2014b Maximal Cherenkov $\unicode[STIX]{x1D6FE}$ -radiation on Fermi-surface of compact stars. Phys. Plasmas 21, 053301.
Akbari-Moghanjoughi, M. 2015 Hydrodynamic limit of Wigner–Poisson kinetic theory: revisited. Phys. Plasmas 22, 022103.
Baimbetov, F. B., Nurekenov, Kh. T. & Ramazanov, T. S. 1995 Pseudopotential theory of classical non-ideal plasmas. Phys. Lett. A 202, 211.
Bartschat, K. 2013 Computational methods for electron–atom collisions in plasma applications. J. Phys. D: Appl. Phys. 46, 334004.
Bethe, H. A. & Salpeter, E. E. 1957 Quantum Mechanics of One- and Two-Electron Atoms. Springer.
Burke, P. G. & Joachain, C. J. 1995 Theory of Electron–Atom Collisions, Part 1: Potential Scattering. Plenum.
Chang, W.-S. & Jung, Y.-D. 2007 Quantum-mechanical effects on polarization elastic electron–atom collisions in partially ionized dense hydrogen plasmas. Phys. Scr. 76, 299.
Chen, F. F. 2016 Introduction to Plasma Physics and Controlled Fusion, 3rd edn. Springer.
Friedrich, H. 2017 Theoretical Atomic Physics, 4th edn. Springer.
Jamil, M., Shahid, M., Zeba, I., Salimullah, M., Shah, H. A. & Murtaza, G. 2012 Quantum modification of dust shear Alfvén wave in plasmas. Phys. Plasmas 19, 023705.
Joachain, C. J. 1983 Quantum Collision Theory, 3rd edn. North Holland.
Jung, Y.-D. & Lee, K.-S. 1995 Screening effects on nonrelativistic bremsstrahlung in the scattering of electrons by neutral atoms. Astrophys. J. 440, 830.
Mott, N. F. & Massey, H. S. 1987 The Theory of Atomic Collisions, vol. II, 3rd edn. Oxford University Press.
Omarbakiyeva, Y. A., Ramazanov, T. S. & Röpke, G. 2009 The electron–atom interaction in partially ionized dense plasmas. J. Phys. A: Math. Gen. 42, 214045.
Osterbrock, D. E. & Ferland, G. J. 2006 Astrophysics of Gaseous Nebulae and Active Galactic Nuclei, 2nd edn. University Science Books.
Pandey, M. K., Lin, Y.-C. & Ho, Y. K. 2012 Cross sections of charge exchange and ionization in $\text{O}^{8+}+\text{H}$ collision in Debye plasmas. Phys. Plasmas 19, 062104.
Pandey, M. K., Lin, Y.-C. & Ho, Y. K. 2013 Investigation of charge transfer and ionization in He-like systems ( $\text{Li}^{+}$ , $\text{Be}^{2+}$ , $\text{B}^{3+}$ , $\text{C}^{4+}$ , $\text{N}^{5+}$ , $\text{O}^{6+}$ )-hydrogen atom collisions in Debye plasmas. Phys. Plasmas 20, 022104.
Pavlov, G. A. 2000 Transport Processes in Plasmas with Strong Coulomb Interaction. Gordon and Breach.
Ramazanov, T. S., Dzhumagulova, K. N. & Gabdullin, M. T. 2006 Microscopic and thermodynamic properties of dense semiclassical partially ionized hydrogen plasma. J. Phys. A: Math. Gen. 39, 4469.
Ramazanov, T. S., Dzhumagulova, K. N. & Gabdullin, M. T. 2010 Effective potentials for ion–ion and charge–atom interactions of dense semiclassical plasma. Phys. Plasmas 17, 042703.
Ramazanov, T. S., Dzhumagulova, K. N., Omarbakiyeva, Y. A. & Röpke, G. 2006 Effective polarization interaction potentials of the partially ionized dense plasma. J. Phys. A: Math. Gen. 39, 4369.
Ramazanov, T. S., Moldabekov, ZH. A., Dzhumagulova, K. N. & Muratov, M. M. 2011 Pseudopotentials of the particles interactions in complex plasmas. Phys. Plasmas 18, 103705.
Ramazanov, T. S., Moldabekov, ZH. A., Gabdullin, M. T. & Ismagambetova, T. N. 2014 Interaction potentials and thermodynamic properties of two component semiclassical plasma. Phys. Plasmas 21, 012706.
Schwinger, J. 2001 Quantum Mechanics. Springer.
Shevelko, V. P. 1997 Atoms and Their Spectroscopic Properties. Springer.
Shevelko, V. P. & Tawara, H. 1995 Semiempirical formulae for multiple ionization of neutral atoms and positive ions by electron impact. J. Phys. B 28, L589.
Shevelko, V. P. & Tawara, H. 1998 Atomic Multielectron Processes. Springer.
Sivia, D. S. 2011 Elementary Scattering Theory. Oxford University Press.
Smirnov, B. M. 2007 Plasma Processes and Plasma Kinetics. Wiley-VCH.
Song, M.-Y., Litsarev, M. S., Shevelko, V. P., Tawara, H. & Yoon, J.-S. 2009 Single- and multiple-electron loss cross-sections for fast heavy ions colliding with neutrals: semi-classical calculations. Nucl. Instrum. Meth. B 267, 2369.
Weinberg, S. 2015 Lectures on Quantum Mechanics, 2nd edn. Cambridge University Press.
Zatsarinny, O. & Bartschat, K. 2013 The $B$ -spline $R$ -matrix method for atomic processes: application to atomic structure, electron collisions and photoionization. J. Phys. B 46, 112001.
MathJax is a JavaScript display engine for mathematics. For more information see


Eikonal-Glauber Thomas–Fermi model for atomic collisions with many-electron atoms for plasma applications

  • Myoung-Jae Lee (a1) (a2) and Young-Dae Jung (a3) (a4)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed