Hostname: page-component-8448b6f56d-mp689 Total loading time: 0 Render date: 2024-04-19T13:32:01.485Z Has data issue: false hasContentIssue false

Efficient generation of $\omega _p$-radiation in a beam-driven thick plasma with oblique density modulation

Published online by Cambridge University Press:  09 June 2022

V.V. Glinskiy*
Affiliation:
Budker Institute of Nuclear Physics SB RAS, 630090 Novosibirsk, Russia Novosibirsk State University, 630090 Novosibirsk, Russia
I.V. Timofeev
Affiliation:
Budker Institute of Nuclear Physics SB RAS, 630090 Novosibirsk, Russia
V.V. Annenkov
Affiliation:
Budker Institute of Nuclear Physics SB RAS, 630090 Novosibirsk, Russia Novosibirsk State University, 630090 Novosibirsk, Russia
*
Email address for correspondence: v.v.glinskiy@yandex.ru

Abstract

Recent experiments on the collective interaction of gigawatt electron beams with plasma at the GOL-PET facility have shown that the power of the electromagnetic radiation at the plasma frequency increases tens of times if the starting plasma is created with quasiperiodic radial density gradients. One of the mechanisms capable of providing highly efficient conversion of an unstable beam-driven wave into an electromagnetic one in the presence of periodic density perturbations is the mechanism of plasma antenna. However, earlier this mechanism was considered only for strictly longitudinal modulation of the plasma density, when its efficiency dropped drastically if the transverse size of the plasma significantly exceeded the radiation wavelength. In this work, based on both analytical theory and particle-in-cell modelling, we will show that the presence of oblique modulation of the plasma density makes the antenna mechanism effective even in a thick plasma, if the long-wavelength satellite of the most unstable beam-driven wave falls into resonance with natural plasma oscillations.

Type
Research Article
Copyright
Copyright © The Author(s), 2022. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Annenkov, V., Berendeev, E., Timofeev, I. & Volchok, E. 2018 High-power terahertz emission from a plasma penetrated by counterstreaming different-size electron beams. Phys. Plasmas 25 (11), 113110.CrossRefGoogle Scholar
Annenkov, V., Berendeev, E., Volchok, E. & Timofeev, I. 2019 a Second harmonic electromagnetic emission in a beam-driven plasma antenna. Plasma Phys. Control. Fusion 61 (5), 055005.CrossRefGoogle Scholar
Annenkov, V., Timofeev, I. & Volchok, E. 2016 a Simulations of electromagnetic emissions produced in a thin plasma by a continuously injected electron beam. Phys. Plasmas 23 (5), 053101.CrossRefGoogle Scholar
Annenkov, V., Timofeev, I. & Volchok, E. 2019 b Highly efficient electromagnetic emission during 100 keV electron beam relaxation in a thin magnetized plasma. Phys. Plasmas 26 (6), 063104.CrossRefGoogle Scholar
Annenkov, V., Volchok, E. & Timofeev, I. 2016 b Generation of high-power electromagnetic radiation by a beam-driven plasma antenna. Plasma Phys. Control. Fusion 58 (4), 045009.CrossRefGoogle Scholar
Arzhannikov, A., Burdakov, A., Burmasov, V., Gavrilenko, D., Ivanov, I., Kasatov, A., Kuznetsov, S., Mekler, K., Polosatkin, S., Postupaev, V., et al. 2014 Observation of spectral composition and polarization of sub-terahertz emission from dense plasma during relativistic electron beam–plasma interaction. Phys. Plasmas 21 (8), 082106.CrossRefGoogle Scholar
Arzhannikov, A., Burdakov, A., Burmasov, V., Ivanov, I., Kasatov, A., Kuznetsov, S., Makarov, M., Mekler, K., Polosatkin, S., Popov, S., et al. 2016 Dynamics and spectral composition of subterahertz emission from plasma column due to two-stream instability of strong relativistic electron beam. IEEE Trans. Terah. Sci. Technol. 6 (2), 245252.CrossRefGoogle Scholar
Arzhannikov, A., Ivanov, I., Kasatov, A., Kuznetsov, S., Makarov, M., Mekler, K., Polosatkin, S., Popov, S., Rovenskikh, A., Samtsov, D., et al. 2020 Well-directed flux of megawatt sub-mm radiation generated by a relativistic electron beam in a magnetized plasma with strong density gradients. Plasma Phys. Control. Fusion 62 (4), 045002.CrossRefGoogle Scholar
Boris, J. 1970 Relativistic plasma simulation-optimization of a hybrid code. In 4th Conference on Numerical Simulation Of Plasma (ed. J.P. Boris & R.A. Shanny), p. 3. Naval Research Laboratory.Google Scholar
Burdakov, A., Arzhannikov, A., Burmasov, V., Ivanov, I., Ivantsivsky, M., Kandaurov, I., Kuznetsov, S., Kurkuchekov, V., Mekler, K., Polosatkin, S., et al. 2013 Microwave generation during 100 keV electron beam relaxation in gol-3. Fusion Sci. Technol. 63 (1 T), 286288.CrossRefGoogle Scholar
Dhillon, S., Vitiello, M., Linfield, E., Davies, A., Hoffmann, M.C., Booske, J., Paoloni, C., Gensch, M., Weightman, P., Williams, G., et al. 2017 The 2017 terahertz science and technology roadmap. J. Phys. D: Appl. Phys. 50 (4), 043001.CrossRefGoogle Scholar
Esirkepov, T.Z. 2001 Exact charge conservation scheme for particle-in-cell simulation with an arbitrary form-factor. Comput. Phys. Commun. 135 (2), 144153.CrossRefGoogle Scholar
Henri, P., Sgattoni, A., Briand, C., Amiranoff, F. & Riconda, C. 2019 Electromagnetic simulations of solar radio emissions. J. Geophys. Res.: Space Phys. 124 (3), 14751490.CrossRefGoogle Scholar
Hur, M.S., Ersfeld, B., Noble, A., Suk, H. & Jaroszynski, D. 2017 Increased impedance near cut-off in plasma-like media leading to emission of high-power, narrow-bandwidth radiation. Sci. Rep. 7 (1), 19.CrossRefGoogle ScholarPubMed
Kalmykov, S., Elle, J. & Schmitt-Sody, A. 2020 Radiation emission at langmuir frequency from laser wake in longitudinally stratified plasma column. Plasma Phys. Control. Fusion 62 (11), 115022.CrossRefGoogle Scholar
Kwon, K.B., Kang, T., Song, H.S., Kim, Y.-K., Ersfeld, B., Jaroszynski, D.A. & Hur, M.S. 2018 High-energy, short-duration bursts of coherent terahertz radiation from an embedded plasma dipole. Sci. Rep. 8 (1), 19.CrossRefGoogle ScholarPubMed
Miao, C., Palastro, J.P. & Antonsen, T.M. 2017 High-power tunable laser driven THz generation in corrugated plasma waveguides. Phys. Plasmas 24 (4), 043109.CrossRefGoogle Scholar
Postupaev, V., Burdakov, A., Ivanov, I., Sklyarov, V., Arzhannikov, A., Gavrilenko, D.Y., Kandaurov, I., Kasatov, A., Kurkuchekov, V., Mekler, K., et al. 2013 Temporal structure of double plasma frequency emission of thin beam-heated plasma. Phys. Plasmas 20 (9), 092304.CrossRefGoogle Scholar
Timofeev, I., Berendeev, E. & Dudnikova, G. 2017 Simulations of a beam-driven plasma antenna in the regime of plasma transparency. Phys. Plasmas 24 (9), 093114.CrossRefGoogle Scholar
Timofeev, I., Volchok, E. & Annenkov, V. 2016 Theory of a beam-driven plasma antenna. Phys. Plasmas 23 (8), 083119.CrossRefGoogle Scholar
Volchok, E., Timofeev, I. & Annenkov, V. 2019 Coherent terahertz emission from a plasma layer due to linear conversion of laser wakefields on pre-modulated ion density. Plasma Phys. Control. Fusion 61 (12), 125006.CrossRefGoogle Scholar
Yao, X., Muñoz, P.A., Büchner, J., Zhou, X. & Liu, S. 2021 The effects of density inhomogeneities on the radio wave emission in electron beam plasmas. J. Plasma Phys. 87 (2), 905870203.CrossRefGoogle Scholar
Yee, K. 1966 Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media. IEEE Trans. Antennas Propag. 14 (3), 302307.Google Scholar
Yoon, P.H. & Wu, C. 1994 Plasma emission via a beam instability with density modulation. Phys. Plasmas 1 (1), 7689.CrossRefGoogle Scholar