Skip to main content Accessibility help
×
Home

The effect of helium impurity addition on current sheath speed in argon-operated plasma focus using a tridimensional magnetic probe

  • N. PANAHI (a1), M. A. MOHAMMADI (a2) (a3), S. HEDYEH (a2) and R. S. RAWAT (a4)

Abstract

Using the tridimensional magnetic probe, the current sheath velocity at 0.25 Torr is studied in Sahand, a Filippov-type plasma focus facility. The current sheath velocity in argon-filled plasma focus with different percentages of helium impurity at different operating voltages was studied. The highest average current sheath velocity of 12.26 ± 1.51 cm μs−1 at the top of the anode in the axial phase was achieved at 17 kV. Minimum average current sheath velocity is 5.24 ± 1.18 cm μs−1 at 12 kV with 80% argon + 20% helium as a working gas. The full width at half-maximum of peaks of the magnetic probe was found to be inversely related to the current sheath velocity, i.e. smaller at higher voltages for different impurity and decreased with increasing of impurity.

Copyright

References

Hide All
Beg, F. N., Ross, I., Lorena, A., Worley, J. F., Danger, A. E. and Hanies, M. G. 2000 J. Appl. Phys. 88, 3225.
Bhuyan, H., Mohanty, S. R., Neagy, N. K., Bujarbarua, S. and Rout, R. K. 2004 J. Appl. Phys. 95, 2975.
Brunelli, B. and Leotta, G. 1982 Unconventional Approach to Fusion. New York: Plenum, 157 pp.
Cloth, P. and Conrads, H. 1977 Nucl. Sci. Engg. 62, 591.
Decker, G., Kies, W. and Pross, G. 1983 Phys. Fluids 26, 571.
Filippov, N. V., Filippova, T. I. and Vinogradov, V. P. 1962 Nucl. Fusion Suppl. 2, 77.
Ghareshabani, E. and Mohammadi, M. A. 2012 J. Fusion Energy 31, 595.
Gribkov, V. A., Srivastava, A., Keat, P. L. C., Kudryashov, V. and Lee, S. 2002 IEEE Trans. Plasma Sci. 30, 1331.
Kato, Y. and Be, S. H. 1986 Appl. Phys. Lett. 48, 686.
Kies, W., Decker, G., Berntien, U., Sidelnikov, Y. V., Glushkov, D. A., Koshelev, K. N., Simanovskii, D. M. and Babashev, S. V. 2000 Plasma Sources Sci. Technol. 9, 27.
Koshelev, K. N., Krauz, V. I., Reshetniak, N. G., Salukvadze, R. G., Sidelnikov, Yu. V. and Khautiev, E. Yu. 1988 J. Phys. D: Appl. Phys. 21 (12), 1827.
Kozlov, N. P., Aleksev, V. A., Protsov, Y. S. and Rubinov, A. B. 1974 JEPT Lett. 20, 331.
Krauz, V., Mitrofanov, K., Myalton, V. V., Grabovski, E. V., Koidan, V. S., Vinogradov, V. P., Vinogradova, Y. V. and Zukakishvili, G. G. 2010 IEEE Trans. Plasma Sci. 38, 92.
Krauz, V., Mitrofanov, K., Scholz, M., Paduch, M., Karpinski, L., Zielinska, E. and Kubes, P. 2012 Plasma Phys. Control. Fusion 54, 025010.
Kwek, K. H., Tou, T. Y. and Lee, S. 1990 IEEE Trans. Plasma Sci. 18, 826.
Lee, S., Lee, P., Zhang, G., Serban, A., Liu, M., Liu, X., Feng, X., Springham, S. V., Selvam, C. S., Kudryashov, V. and Wong, T. K. S. 2003 Sing. J. Phys. 173, 276.
Mather, J. W. 1964 Phys. Fluids 7, 5.
Mather, J. W. 1965 Phys. Fluids 8, 366.
Mohammadi, M. A., Sobhanian, S., Ghomeshi, M., Ghareshabani, E., Moslehi-fard, M., Lee, S. and Rawat, R. S. 2009 J. Fusion Energy 28, 371.
Mohammadi, M. A., Sobhanian, S. and Rawat, R. S. 2011 Phys. Lett. A 375, 3002.
Mohammadi, M. A., Verma, R., Sobhanian, S., Wong, C. S., Lee, S., Springham, S. V., Tan, T. L., Lee, P. and Rawat, R. S. 2007 Plasma Sour. Sci. Tech. 16, 785.
Patran, A., Stoenescu, D., Rawat, R. S., Springham, S. V., Tan, T. L., Tan, T. L., Rafique, M. S., Lee, P. and Lee, S. 2006 J. Fusion Energy 25, 57.
Rawat, R. S., Arun, P., Vedeshwer, A. G., Lam, Y. L., Liu, M. H., Lee, P. and Lee, S. 2000 Mater. Res. Bull. 35, 477.
Rawat, R. S., Arun, P., Vedeshwer, A. G., Lee, P. and Lee, S. 2004 J. Appl. Phys. 95, 7725.
Sadowski, M., Zebrowski, J., Rydygier, E. and Kucinski, J. 1988 Plasma Phys. Contr. Fusion 30, 763.
Schmidt, H., Sadowski, M., Jakubowski, L., Sadowska, E. S. and Stanislawski, J. 1994 Plasma Phys. Control. Fusion 36, 13.
Shafiq, M., Hussain, S., Waheed, A. and Zakaullah, M. 2003 Plasma Sour. Sci. Tech. 12, 199.
Soh, L. Y., Lee, P., Shuyan, X., Lee, S. and Rawat, R. S. 2004 IEEE Trans. Plasma Sci. 32, 448.
Soto, L., Silva, P., Moreno, J., Zambra, M., Kies, W., Mayer, R. E., Clausse, A., Altamirano, L., Pavez, C. and Huerta, L. 2008 J. Phys. D: Appl. Phys. 41, 205215.
Srivastava, M. P., Mohanty, S. R., Annapoorni, S. and Rawat, R. S. 1997 Phys. Lett. A 231, 434.
Valipour, M., Mohammadi, M. A., Sobhanian, S. and Rawat, R. S. 2012 J. Fusion Energy 31, 65.
Verma, R., Lee, P., Lee, S., Springham, S. V., Tan, T. L., Krishnan, M. and Rawat, R. S. 2009 Appl. Phys. Lett. 93, 101501.
Verma, R., Lee, P., Lee, S., Springham, S. V., Tan, T. L., Rawat, R. S. and Krishnan, M. 2008 Appl. Phys. Lett. 93, 101501.
Vikherev, V. V. and Braginski, S. I. 1986 Rev. Plasma Phys. 10, 425.
Wong, D., Patran, A., Tan, T. L., Rawat, R. S. and Lee, P. 2004 IEEE Trans. Plasma Sci. 32, 2227.
Zakaullah, M., Alamgir, K., Shafiq, M., Hassan, S. M., Sharif, M., Hussain, S. and Waheed, A. 2002a Plasma Sour. Sci. Tech. 11, 377.
Zakaullah, M., Alamgir, A., Shafiq, M., Sharif, M. and Waheed, A. 2002b IEEE Trans. Plasma Sci. 30, 2089.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed