Skip to main content Accessibility help
×
Home

Dynamical behaviors of nonlinear dust acoustic waves: From plane waves to dust acoustic wave turbulence

  • Ya-Yi Tsai (a1), Mei-Chu Chang (a1) and Lin I. (a1)

Abstract

The dust acoustic wave (DAW), associated with longitudinal dust oscillations in dusty plasmas, can be self-excited from the free energy of ion streaming. It is not only a fundamental plasma wave but also a paradigm to understand the generic dynamical behaviors of self-excited nonlinear longitudinal density waves through optically monitoring particle motion and dust density evolutions over a large area. In this paper, the dynamical behaviors of the wave-particle interaction and wave breaking in ordered self-excited DAW with straight wave fronts, and the defect-mediated wave turbulence with fluctuating defects and chaotic low amplitude hole filaments along defect trajectories in the 2+1D space-time space, are briefly reviewed. The first experimental observation of acoustic vortices with helical waveforms in self-excited acoustic-type defect-mediated wave turbulence, and the dynamics of spontaneous pair generation, propagation, and pair annihilation of acoustic vortices, is demonstrated and discussed.

Copyright

Corresponding author

Email address for correspondence: lini@phy.ncu.edu.tw

References

Hide All
Antar, G. Y., Krasheninnikov, S. I., Devynck, P., Doerner, R. P., Hollmann, E. M., Boedo, J. A., Luckhardt, S. C. and Conn, R. W. 2001 Experimental evidence of intermittent convection in the edge of magnetic confinement devices. Phys. Rev. Lett. 87, 065001.
Bodenschatz, E., Pesch, W. and Ahlers, G. 2000 Phase singularities and filaments: simplifying complexity in computational models of ventricular fibrillation. Annu. Rev. Fluid Mech. 32, 709.
Chang, M. C., Teng, L. W. and I, L. 2012 Micro-origin of no-trough trapping in self-excited nonlinear dust acoustic waves. Phys. Rev. E 85, 046410.
Chang, M. C., Tsai, Y. Y. and I, L. 2013 Observation of 3D defect-mediated dust acoustic wave turbulence with fluctuating defects and amplitude hole filaments. Phys. Plasma 20, 083703.
Chen, F. F. 1974 Introduction to Plasma Physics. New York, NY: Plenum Press, 199 pp.
Clayton, R. H., Zhuchkova, E. A. and Panfilov, A. V. 2006 Phase singularities and filaments: simplifying complexity in computational models of ventricular fibrillation. Prog. Biophys. Mol. Biol. 90, 378.
Coullet, P., Gil, L. and Lega, J. 1989 Defect-mediated turbulence. Phys. Rev. Lett. 62, 1619.
Cross, M. C. and Hohenberg, P. C. 1993 Pattern formation outside of equilibrium. Rev. Mod. Phys. 65, 851.
Dawson, J. M. 1959 Nonlinear electron oscillations in a cold plasma. Phys. Rev. 113, 383.
Falcon, E., Fauve, S. and Laroche, C. 2007 Observation of intermittency in wave turbulence. Phys. Rev. Lett. 98, 154501.
Fortov, V. E., Usachev, A. D., Zobnin, A. V., Molotkov, V. I. and Petrov, O. F. 2003 Dust-acoustic wave instability at the diffuse edge of radio frequency inductive low-pressure gas discharge plasma. Phys. Plasmas 10, 1199.
Gabor, D. 1946 Theory of communication. J. Inst. Electr. Eng. Radio Commun. Eng. 93, 429.
Hefiner, B. T. and Marston, P. L. 1999 An acoustical helicoidal wave transducer with applications for the alignment of ultrasonic and underwater systems. J. Acoust. Soc. Am. 10, 3313.
Kaw, P. and Singh, R. 1997 Collisional instabilities in a dusty plasma with recombination and ion-drift effects. Phys. Rev. Lett. 79, 423.
Liao, C. T., Teng, L. W., Tsai, C. Y., Io, C. W. and I, L. 2008 Lagrangian-eulerian micromotion and wave heating in nonlinear self-excited dust-acoustic waves. Phys. Rev. Lett. 100, 185004.
Menzel, K. O., Arp, O. and Piel, A. 2010 Spatial frequency clustering in nonlinear dust-density waves. Phys. Rev. Lett. 104, 235002.
Modena, A., Najmudin, Z., Dangor, A. E., Clayton, C. E., Marsh, K. A., Joshi, C., Malka, V., Darrow, C. B., Danson, C., Neely, D.et al. 1995 Electron acceleration from the breaking of relativistic plasma waves. Nature (Lond.) 377, 606.
Nye, J. F. and Berry, M. V. 1974 Dislocations in wave trains. Proc. R. Soc. Lond. A 336, 165.
Piel, A., Klindworth, M., Arp, O., Melzer, A. and Wolter, M. 2006 Obliquely propagating dust-density plasma waves in the presence of an ion beam. Phys. Rev. Lett. 97, 205009.
Qiao, C., Wang, H. and Ouyang, Q. 2009 Defect-mediated turbulence in the Belousov–Zhabotinsky reaction. Phys. Rev. E 79, 016212.
Rao, N. N., Shukla, P. K. and Yu, M. Y. 1990 Defect-mediated turbulence in the Belousov–Zhabotinsky reaction. Planet. Space Sci. 38, 543.
Schwabe, M., Rubin-Zuzic, M., Zhdanov, S., Thomas, H. M. and Morfill, G. E. 2007 Highly resolved self-excited density waves in a complex plasma. Phys. Rev. Lett. 99, 095002.
Shukla, P. K. 2012 Twisted dust acoustic waves in dusty plasmas. Phys. Plasma 19, 083704.
Shukla, P. K. and Eliasson, B. 2012 Nonlinear dynamics of large-amplitude dust acoustic shocks and solitary pulses in dusty plasmas. Phys. Rev. E 86, 046402.
Teng, L. W., Chang, M. C., Tseng, Y. P. and I, L. 2009 Wave-particle dynamics of wave breaking in the self-excited dust acoustic wave. Phys. Rev. Lett. 103, 245005.
Thomas, J-L. and Marchiano, R. 2003 Pseudo angular momentum and topological charge conservation for nonlinear acoustical vortices. Phys. Rev. Lett. 91, 244302.
Tsai, Y. Y., Chang, M. C. and I, L. 2012 Observation of multifractal intermittent dust-acoustic-wave turbulence. Phys. Rev. E 86, 045402(R).
Tsai, Y. Y. and I, L. Submitted Observation of self-excited acoustic vortices in defect mediated dust acoustic wave turbulence. Phys. Rev. E.
Vinson, M., Mlronov, S., Mulvey, S. and Pertsov, A. 1997 Control of spatial orientation and lifetime of scroll rings in excitable media. Nature 386, 477.
Volke-Sepulveda, K., Santillan, A. O. and Boullosa, R. R. 2008 Pseudo angular momentum and topological charge conservation for nonlinear acoustical vortices. Phys. Rev. Lett. 100, 024302.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Dynamical behaviors of nonlinear dust acoustic waves: From plane waves to dust acoustic wave turbulence

  • Ya-Yi Tsai (a1), Mei-Chu Chang (a1) and Lin I. (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed