Skip to main content Accessibility help
×
Home

Dust vortices in a direct current glow discharge plasma: a delicate balance between ion drag and Coulomb force

  • Sayak Bose (a1) (a2), M. Kaur (a1) (a3), P. K. Chattopadhyay (a1), J. Ghosh (a1), Edward Thomas (a4) and Y. C. Saxena (a1)...

Abstract

Dust vortices with a void at the centre are reported in this paper. The role of the spatial variation of the plasma potential in the rotation of dust particles is studied in a parallel plate glow discharge plasma. Probe measurements reveal the existence of a local potential minimum in the region of formation of the dust vortex. The minimum in the potential well attracts positively charged ions, while it repels the negatively charged dust particles. Dust rotation is caused by the interplay of the two oppositely directed ion drag and Coulomb forces. The balance between these two forces is found to play a major role in the radial confinement of the dust particles above the cathode surface. Evolution of the dust vortex is studied by increasing the discharge current from 15 to 20 mA. The local minimum of the potential profile is found to coincide with the location of the dust vortex for both values of discharge currents. Additionally, it is found that the size of the dust vortex as well as the void at the centre increases with the discharge current.

Copyright

Corresponding author

Email address for correspondence: sayakbose02@gmail.com

References

Hide All
Adhikary, N. C., Bailung, H., Pal, A. R., Chutia, J. & Nakamura, Y. 2007 Observation of sheath modification in laboratory dusty plasma. Phys. Plasmas 14 (10), 103705.
Akdim, M. R. & Goedheer, W. J. 2003 Modeling of self-excited dust vortices in complex plasmas under microgravity. Phys. Rev. E 67 (5), 056405.
Barkan, A., Merlino, R. L. & D’angelo, N. 1995 Laboratory observation of the dust-acoustic wave mode. Phys. Plasmas 2 (10), 35633565.
Bose, S., Kaur, M., Chattopadhyay, P. K., Ghosh, J., Saxena, Y. C. & Pal, R. 2017 Langmuir probe in collisionless and collisional plasma including dusty plasma. J. Plasma Phys. 83 (2), 615830201.
Chai, K.-B. & Bellan, P. M. 2016 Vortex motion of dust particles due to non-conservative ion drag force in a plasma. Phys. Plasmas 23 (2), 023701.
Chu, J. H. & Lin, I. 1994 Direct observation of Coulomb crystals and liquids in strongly coupled RF dusty plasmas. Phys. Rev. Lett. 72 (25), 4009.
Epstein, P. S. 1924 On the resistance experienced by spheres in their motion through gases. Phys. Rev. 23 (6), 710.
Fortov, V. E. & Morfill, G. E. 2010 Complex and Dusty Plasmas: From Laboratory to Space. CRC Press.
Frost, L. S. 1957 Effect of variable ionic mobility on ambipolar diffusion. Phys. Rev. 105, 354356.
Ivlev, A. V., Khrapak, S. A., Zhdanov, S. K., Morfill, G. E. & Joyce, G. 2004 Force on a charged test particle in a collisional flowing plasma. Phys. Rev. Lett. 92, 205007.
Ivlev, A. V., Zhdanov, S. K., Khrapak, S. A. & Morfill, G. E. 2005 Kinetic approach for the ion drag force in a collisional plasma. Phys. Rev. E 71, 016405.
Kaur, M., Bose, S., Chattopadhyay, P. K., Ghosh, J. & Saxena, Y. C. 2016 Complex plasma experimental device – a test bed for studying dust vortices and other collective phenomena. Pramana 87 (6), 89.
Kaur, M., Bose, S., Chattopadhyay, P. K., Sharma, D., Ghosh, J. & Saxena, Y. C. 2015a Observation of dust torus with poloidal rotation in direct current glow discharge plasma. Phys. Plasmas 22 (3), 033703.
Kaur, M., Bose, S., Chattopadhyay, P. K., Sharma, D., Ghosh, J., Saxena, Y. C. & Thomas, E. Jr. 2015b Generation of multiple toroidal dust vortices by a non-monotonic density gradient in a direct current glow discharge plasma. Phys. Plasmas 22 (9), 093702.
Kaur, M., Bose, S., Chattopadhyay, P. K., Ghosh, J. & Saxena, Y. C. 2015c Resolving issues associated with Langmuir probe measurements in high pressure complex (dusty) plasmas. In Proceedings of the Tenth Asia Plasma and Fusion Association Conference, p. 168.
Khrapak, S. A. & Morfill, G. E. 2008 An interpolation formula for the ion flux to a small particle in collisional plasmas. Phys. Plasmas 15 (11), 114503.
Laframboise, J. G.1966 Theory of spherical and cylindrical Langmuir probes in a collisionless, maxwellian plasma at rest. Tech. Rep. DTIC Document.
Laishram, M., Sharma, D. & Kaw, P. K. 2014 Dynamics of a confined dusty fluid in a sheared ion flow. Phys. Plasmas 21 (7), 073703.
Law, D. A., Steel, W. H., Annaratone, B. M. & Allen, J. E. 1998 Probe-induced particle circulation in a plasma crystal. Phys. Rev. Lett. 80, 41894192.
Liu, B., Goree, J., Nosenko, V. & Boufendi, L. 2003 Radiation pressure and gas drag forces on a melamine-formaldehyde microsphere in a dusty plasma. Phys. Plasmas 10 (1), 920.
Merlino, R. L., Barkan, A., Thompson, C. & D’angelo, N. 1998 Laboratory studies of waves and instabilities in dusty plasmas. Phys. Plasmas 5 (5), 16071614.
Merlino, R. L. 2014 25 years of dust acoustic waves. J. Plasma Phys. 80 (6), 773786.
Praburam, G. & Goree, J. 1996 Experimental observation of very low-frequency macroscopic modes in a dusty plasma. Phys. Plasmas 3 (4), 12121219.
Rao, N. N., Shukla, P. K. & Yu, M. Y. 1990 Dust-acoustic waves in dusty plasmas. Planet. Space Sci. 38 (4), 543546.
Saffman, P. G. 1981 Dynamics of vorticity. J. Fluid Mech. 106, 4958.
Samarian, A., Vaulina, O., Tsang, W. & James, B. W. 2002 Formation of vertical and horizontal dust vortexes in an RF-discharge plasma. Phys. Scr. 2002 (T98), 123.
Samsonov, D. & Goree, J. 1999 Instabilities in a dusty plasma with ion drag and ionization. Phys. Rev. E 59 (1), 1047.
Schulz, G. J. & Brown, S. C. 1955 Microwave study of positive ion collection by probes. Phys. Rev. 98, 16421649.
Talbot, L. & Chou, Y. S. 1969 Langmuir probe response in the transition regime. In Rarefied Gas Dynamics, vol. II, pp. 17231737. Academic.
Taylor, Z. J., Gurka, R., Kopp, G. A. & Liberzon, A. 2010 Long-duration time-resolved PIV to study unsteady aerodynamics. IEEE Trans. Instrument. Meas. 59 (12), 32623269.
Thomas, E. Jr. 1999 Direct measurements of two-dimensional velocity profiles in direct current glow discharge dusty plasmas. Phys. Plasmas 6 (7), 26722675.
Thomas, E. Jr., Avinash, K. & Merlino, R. L. 2004 Probe induced voids in a dusty plasma. Phys. Plasmas 11 (5), 17701774.
Tichý, M., S̃ícha, M., David, P. & David, T. 1994 A collisional model of the positive ion collection by a cylindrical Langmuir probe. Contrib. Plasma Phys. 34 (1), 5968.
Tsytovich, V. N., Vladimirov, S. V., Morfill, G. E. & Goree, J. 2001 Theory of collision-dominated dust voids in plasmas. Phys. Rev. E 63, 056609.
Vaulina, O. S., Petrov, O. F., Fortov, V. E., Morfill, G. E., Thomas, H. M., Semenov, Y. P., Ivanov, A. I., Krikalev, S. K. & Gidzenko, Y. P. 2004 Analysis of dust vortex dynamics in gas discharge plasma. Phys. Scr. 2004 (T107), 224.
Vaulina, O. S., Samarian, A. A., Nefedov, A. P. & Fortov, V. E. 2001 Self-excited motion of dust particles in a inhomogeneous plasma. Phys. Lett. A 289 (4), 240244.
Williams, J. D. 2016 Application of particle image velocimetry to dusty plasma systems. J. Plasma Phys. 82 (3), 615820302.
Zakrzewski, Z. & Kopiczynski, T. 1974 Effect of collisions on positive ion collection by a cylindrical Langmuir probe. Plasma Physics 16 (12), 1195.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Keywords

Type Description Title
UNKNOWN
Supplementary materials

Bose et al. supplementary material
Bose et al. supplementary material 1

 Unknown (28.6 MB)
28.6 MB

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed