Skip to main content Accessibility help
×
Home

Drift approximation and ideal MHD of cold relativistic winds

  • Sergey V. Bogovalov (a1)

Abstract

A critical revision of the essential principles of the physics of relativistic flows of cold plasma is given. We prove that the approximation of ideal magnetic hydrodynamics of the cold plasma is equivalent to the drift approximation of motion of charged particles in an electromagnetic field. The equations of magnetohydrodynamics are obtained from equations for the drift motion of the charged particles. The conditions of application of the equations of ideal magnetohydrodynamics are obtained. In the case of the Crab pulsar the violation of the frozen-in condition can happen at a distance that well exceeds the distance to the termination shock. One fluid MHD can be incorrect at the light cylinder provided that the Lorentz factor of the plasma exceeds $10^{4}$ and the curvature radius of the flow line is comparable with the light cylinder. It is shown that the electric currents in the cold plasma are the result of the inertial drift motion of the charged particles in the crossed electric and magnetic fields.

Copyright

Corresponding author

Email address for correspondence: svbogovalov@mephi.ru

References

Hide All
Ahiezer, A. I., Ahiezer, I. A., Polovin, R. V., Sitenko, A. G. & Stepanov, K. N. 1974 Electrodynamics of Plasma (in Russian). Nauka.
Ardavan, H. 1976 Magnetospheric shock discontinuities in pulsars. I. Analysis of the inertial effects at the light cylinder. Astrophys. J. 203, 226232.
Arons, J. 2004 Theory of pulsar winds. Adv. Space Res. 33, 466474.
Beskin, V. S., Gurevich, A. V. & Istomin, Ya. N. 1983 The electrodynamics of a pulsar magnetosphere. J. Expl Theor. Phys. 85, 401433.
Beskin, V. S. & Rafikov, R. R. 2000 On the particle acceleration near the light surface of radio pulsars. Mon. Not. R. Astron. Soc. 313, 433444.
Beskin, V. S., Zakamska, N. L. & Sol, H. 2004 Radiation drag effects on magnetically dominated outflows around compact objects. Mon. Not. R. Astr. Soc. 347, 587600.
Bogovalov, S. V. 2001 Acceleration and collimation of relativistic plasmas ejected by fast rotators. Astron. Astrophys. 371, 11551168.
Bogovalov, S. V. 2014 Magnetocentrifugal acceleration of bulk motion of plasma in pulsar magnetosphere. Mon. Not. R. Astron. Soc. 443, 21972203.
Bogolubov, N. N. & Mitropolsky, Yu. A. 1974 Asymptotic Methods in Theory of Nonlinear Oscillations (in Russian). Nauka.
Chen, A. Y. & Beloborodov, F. M. 2014 Electrodynamics of axisymmetric pulsar magnetosphere with electron–positron discharge: a numerical experiment. Astrophys. J. 795L, 22.
Cheng, K. S., Ho, C. & Ruderman, M. A. 1986 Energetic radiation from rapidly spinning pulsars. I – Outer magnetosphere gaps. II – VELA and Crab. Astrophys. J. 300, 500.
Daugherty, J. K. & Harding, A. K. 1994 Polar CAP models of gamma-ray pulsars: emission from single poles of nearly aligned rotators. Astrophys. J. 429, 325.
Frank-Kamenetsky, D. A. 1968 Lectures on Plasma Physics (in Russian). Atomizdat.
Goldreich, P. & Julian, W. H. 1969 Pulsar electrodynamics. Astrophys. J. 157, 869.
Gurevich, A. V. & Istomin, Ya. N. 1985 Electron–positron plasma generation in a pulsar magnetosphere. J. Expl Theor. Phys. 89, 3.
Istomin, Ya. N. & Sob’yanin, D. N. 2011 Absorption of gamma-ray photons in a vacuum neutron star magnetosphere: I. Electron–positron pair production. J. Expl Theor. Phys. 113, 592.
Kennel, C. F. & Coroniti, F. V. 1984 Confinement of the Crab pulsar’s wind by its supernova remnant. Astrophys. J. 283, 694.
Kirk, J. G., Luybarsky, Yu. & Petri, J. 2009 The theory of pulsar winds and nebulae, in neutron stars and pulsars. Astrophys. Space Sci. Lib. 367, 421450.
Kocharovsky, V. V., Kocharovsky, Vl. V. & Martyanov, V. Ju. 2010 Self-consistent current sheets and filaments in relativistic collisionless plasma with arbitrary energy distribution of particles. Phys. Rev. Lett. 104, 215002.
Koide, S. 2009 Generalized relativistic magnetohydrodynamic equations for pair and electron–ion plasmas. Astrophys. J. 696, 22202233.
Luybarsky, Yu. 2009 Asymptotic structure of Poynting-dominated jets. Astrophys. J. 697, 15701589.
Medin, Z. & Lai, D. 2010 Pair cascades in the magnetospheres of strongly magnetized neutron stars. Mon. Not. R. Astron. Soc. 406, 1379.
Melatos, A. & Melrose, D. B. 1996 Energy transport in a rotation-modulated pulsar wind. Mon. Not. R. Astron. Soc. 279, 11681190.
Michel, F. C. 1969 Relativistic stellar-wind torques. Astrophys. J. 158, 727.
Morozov, A. I. & Solov’ev, L. S. 1963 Motion of charged particles in electromagnetic fields. In Questions of Plasma Theory. (Voprosy Teorii Plasmy) (ed. Leontovich, M. A.), vol. 2, p. 177.
Polovin, R. V. & Demutskii, V. P. 1990 Fundamentals of Magnetohydrodynamics. Consultants Bureau.
Rees, M. J. & Gunn, J. E. 1974 The origin of the magnetic field and relativistic particles in the Crab Nebula. Mon. Not. R. Astron. Soc. 167, 112.
Romani, R. W. 1996 Gamma-ray pulsars: radiation processes in the outer magnetosphere. Astrophys. J. 470, 469.
Sivukhin, D. V. 1963 Drift theory of motion of charged particles in electromagnetic fields. In Questions of Plasma Theory (Voprosy Teorii Plasmy) (ed. Leontovich, M. A.), vol. 1, p. 7. Gosatomizdat.
Tchekhovskoy, A., McKinney, J. C. & Narayan, R. 2008 Simulations of ultrarelativistic magnetodynamic jets from gamma-ray burst engines. Mon. Not. R. Astron. Soc. 388, 551572.
Timokhin, A. N. & Arons, J. 2013 Current flow and pair creation at low altitude in rotation-powered pulsars’ force-free magnetospheres: space charge limited flow. Mon. Not. R. Astron. Soc. 429, 20.
Timokhin, A. N. & Harding, A. 2015 On the polar CAP cascade pair multiplicity of young pulsars. Astrophys. J. 810, 144.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Drift approximation and ideal MHD of cold relativistic winds

  • Sergey V. Bogovalov (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed