Skip to main content Accessibility help
×
Home

Dispersion relation for electrostatic waves in plasmas with isotropic and anisotropic Kappa distributions for electrons and ions

  • L. F. Ziebell (a1), R. Gaelzer (a1) and F. J. R. Simões (a2)

Abstract

Velocity distribution functions which feature extended tails with power-law dependence have been consistently observed in the solar wind environment and are frequently modelled by the so-called Kappa distributions. Different forms of Kappa distributions are commonly employed in analytical studies, and despite their similarities, they can produce different effects on the dispersion properties that occur in a plasma. We consider two different and widely used forms of Kappa distributions, in both isotropic and anisotropic cases, and systematically discuss their effects on the dispersion relations of Langmuir and ion-sound waves. It is shown that in the case of Langmuir waves, one of the forms leads to the expression for the Bohm–Gross dispersion relation, valid for plasmas with Maxwellian velocity distributions, while the other form of Kappa functions leads to a dispersion relation with significant difference regarding the Maxwellian case, particularly in the case of small values of the kappa index. For ion-sound waves, the dispersion relations obtained with the different forms of Kappa distributions are different among themselves, and also different from the Maxwellian case, with difference which increases for small values of the kappa index. Some results obtained from numerical solution of the dispersion relations are presented, which illustrate the magnitude of the perceived differences. Some results obtained with relativistic particle-in-cell simulations are also presented, which allow the comparison between the dispersion relations obtained from analytical calculations and the frequency–wavelength distribution of wave fluctuations which are observed in numerical experiments.

Copyright

Corresponding author

Email address for correspondence: luiz.ziebell@ufrgs.br

References

Hide All
Abdul, R. F. & Mace, R. L. 2014 A method to generate kappa distributed random deviates for particle-in-cell simulations. Comput. Phys. Commun. 185 (10), 23832386.
Gaelzer, R. & Ziebell, L. F. 2014 The dispersion relations of dispersive Alfvén waves in superthermal plasmas. J. Geophys. Res. 119 (12), 93349356.
Gaelzer, R. & Ziebell, L. F. 2016 Obliquely propagating electromagnetic waves in magnetized kappa plasmas. Phys. Plasmas 23 (2), 022110.
Gaelzer, R., Ziebell, L. F. & Meneses, A. R. 2016 The general dielectric tensor for bi-kappa magnetized plasmas. Phys. Plasmas 23 (6), 062108.
Hapgood, M., Perry, C., Davies, J. & Denton, M. 2011 The role of suprathermal particle measurements in CrossScale studies of collisionless plasma processes. Planet. Space Sci. 59, 618629.
Hasegawa, A., Mima, K. & Duongvan, M. 1985 Plasma distribution function in a superthermal radiation-field. Phys. Rev. Lett. 54 (24), 26082610.
Hau, L. N. & Fu, W. Z. 2007 Mathematical and physical aspects of Kappa velocity distribution. Phys. Plasmas 14 (11), 110702.
Hau, L. N., Fu, W. Z. & Chuang, S. H. 2009 Response to ‘Comment on “Mathematical and physical aspects of Kappa velocity distribution”’ [Phys. Plasmas 16, 094701 (2009)]. Phys. Plasmas 16 (9), 094702.
Hellberg, M. & Mace, R. 2002 Generalized plasma dispersion function for a plasma with a kappa-Maxwellian velocity distribution. Phys. Plasmas 9 (5, 1), 14951504.
Hellberg, M. A., Mace, R. L., Baluku, T. K., Kourakis, I. & Saini, N. S. 2009 Comment on ‘Mathematical and physical aspects of Kappa velocity distribution’ [Phys. Plasmas 14, 110702 (2007)]. Phys. Plasmas 16 (9), 094701.
Hellberg, M., Mace, R. & Cattaert, T. 2006 Effects of superthermal particles on waves in magnetized space plasmas. Space Sci. Rev. 121, 127139.
Lazar, M. 2012 The electromagnetic ion-cyclotron instability in bi-Kappa distributed plasmas. Astron. Astrophys. 547, A94.
Lazar, M., Fichtner, H. & Yoon, P. H. 2016 On the interpretation and applicability of $\unicode[STIX]{x1D705}$ -distributions. Astron. Astrophys. 589, A39.
Lazar, M., Pierrard, V., Poedts, S. & Schlickeiser, R. 2012 Modeling space plasma dynamics with anisotropic Kappa distributions. Astrophys. Space Sci. Proc. 33, 97107.
Lazar, M. & Poedts, S. 2009a Firehose instability in space plasmas with bi-kappa distributions. Astron. Astrophys. 494, 311315.
Lazar, M. & Poedts, S. 2009b Limits for the firehose instability in space plasmas. Solar Phys. 258, 119128.
Lazar, M. & Poedts, S. 2014 Instability of the parallel electromagnetic modes in Kappa distributed plasmas – II. Electromagnetic ion-cyclotron modes. Mon. Not. R. Astron. Soc. 437 (1), 641648.
Lazar, M., Poedts, S. & Schlickeiser, R. 2011 Proton firehose instability in bi-Kappa distributed plasmas. Astron. Astrophys. 534, A116.
Leubner, M. P. 2002 A nonextensive entropy approach to Kappa-distributions. Astrophys. Space Sci. 282 (3), 573579.
Leubner, M. P. 2004 Core-halo distribution functions: a natural equilibrium state in generalized thermostatistics. Astrophys. J. 604, 469478.
Leubner, M. & Schupfer, N. 2000 Mirror instability thresholds in suprathermal space plasmas. J. Geophys. Res. 105 (A12), 2738727391.
Leubner, M. & Schupfer, N. 2001 A general kinetic mirror instability criterion for space applications. J. Geophys. Res. 106 (A7), 1299312998.
Li, B. & Cairns, I. H. 2014 Fundamental emission of type III bursts produced in non-Maxwellian coronal plasmas with Kappa-distributed background particles. Solar Phys. 289, 951976.
Livadiotis, G. 2015 Introduction to special section on origins and properties of Kappa distributions: statistical background and properties of Kappa distributions in space plasmas. J. Geophys. Res. 120 (3), 16071619.
Livadiotis, G. & McComas, D. J. 2009 Beyond kappa distributions: exploiting Tsallis statistical mechanics in space plasmas. J. Geophys. Res. 114, A11105.
Livadiotis, G. & McComas, D. J. 2011 Invariant Kappa distribution in space plasmas out of equilibrium. Astrophys. J. 741 (2), 88.
Livadiotis, G. & McComas, D. J. 2013 Understanding Kappa distributions: a toolbox for space science and astrophysics. Space Sci. Rev. 175, 183214.
Mace, R. L. 2003 A Gordeyev integral for electrostatic waves in a magnetized plasma with a kappa velocity distribution. Phys. Plasmas 10, 2181.
Mace, R. L. & Hellberg, M. A. 1995 A dispersion function for plasmas containing superthermal particles. Phys. Plasmas 2 (6), 20982109.
Mace, R. L. & Hellberg, M. A. 2009 A new formulation and simplified derivation of the dispersion function for a plasma with a kappa velocity distribution. Phys. Plasmas 16 (7), 072113.
Mace, R. & Hellberg, M. 2003 Generalized Langmuir waves in a magnetized plasma with a Maxwellian–Lorentzian distribution. Phys. Plasmas 10 (1), 2128.
Maksimovic, M., Pierrard, V. & Riley, P. 1997 Ulysses electron distributions fitted with Kappa functions. Geophys. Res. Lett. 24 (9), 11511154.
Olbert, S. 1968 Summary of experimental results from MIT detector on IMP-1. In Physics of the Magnetosphere: Based Upon the Proceedings of the Conference held at Boston College June 19–28, 1967 (ed. Carovillano, R. L., McClay, J. F. & Radoski, H. R.), pp. 641659. Springer.
Omura, Y. & Matsumoto, H. 1993 Computer Space Plasma Physics: Simulation Techniques and Software. Terra Scientific Publishing Company.
Podesta, J. J. 2015 Small-amplitude Langmuir pulse excited by a planar grid electrode in a flowing plasma. J. Plasma Phys. 8 (5), 905810503.
dos Santos, M. S., Ziebell, L. F. & Gaelzer, R. 2014 Ion firehose instability in plasmas with plasma particles described by product bi-kappa distributions. Phys. Plasmas 21, 112102.
dos Santos, M. S., Ziebell, L. F. & Gaelzer, R. 2015 Ion-cyclotron instability in plasmas described by product-bi-kappa distributions. Phys. Plasmas 22 (12), 122107.
dos Santos, M. S., Ziebell, L. F. & Gaelzer, R. 2016 Ion firehose instability in a dusty plasma considering product-bi-kappa distributions for the plasma particles. Phys. Plasmas 23 (1), 013705.
Silva, R., Plastino, A. & Lima, J. 1998 A Maxwellian path to the q-nonextensive velocity distribution function. Phys. Lett. A 249 (5–6), 401408.
Summers, D. & Thorne, R. M. 1991 The modified plasma dispersion function. Phys. Fluids B 3 (8), 18351847.
Thorne, R. M. & Summers, D. 1991 Landau damping in space plasmas. Phys. Fluids B 3 (8), 21172123.
Tsallis, C. 1988 Possible generalization of Boltzmann–Gibbs statistics. J. Stat. Phys. 52 (1–2), 479487.
Tsallis, C., Mendes, R. & Plastino, A. 1998 The role of constraints within generalized nonextensive statistics. Phys. A 261 (3–4), 534554.
Vasyliunas, V. M. 1968 A survey of low-energy electrons in evening sector of magnetosphere with OGO 1 and OGO 3. J. Geophys. Res. 73 (9), 2839.
Ziebell, L. F. & Gaelzer, R. 2017 On the influence of the shape of kappa distributions of ions and electrons on the ion-cyclotron instability. Phys. Plasmas 24 (9), 102108.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Keywords

Dispersion relation for electrostatic waves in plasmas with isotropic and anisotropic Kappa distributions for electrons and ions

  • L. F. Ziebell (a1), R. Gaelzer (a1) and F. J. R. Simões (a2)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed