Hostname: page-component-77c89778f8-vsgnj Total loading time: 0 Render date: 2024-07-17T21:09:35.189Z Has data issue: false hasContentIssue false

Current–voltage characteristics of ionic liquid–air glow discharges

Published online by Cambridge University Press:  01 February 2013

T. ABDUL KAREEM
Affiliation:
PG and Research Department of Physics, Kongunadu Arts and Science College, GN Mills PO, Coimbatore 641029, Tamilnadu, India (abdulkareem.t@gmail.com, anuplasmakasc@gmail.com)
A. ANU KALIANI
Affiliation:
PG and Research Department of Physics, Kongunadu Arts and Science College, GN Mills PO, Coimbatore 641029, Tamilnadu, India (abdulkareem.t@gmail.com, anuplasmakasc@gmail.com)

Abstract

I–V characteristics of air glow discharge, ionic liquid–contact air glow discharge and ionic liquid–air glow discharge are presented and photographs of the discharges are shown. It is found that the I–V characteristics of the air glow discharge always obey Ohm's law but I–V characteristics of the ionic liquid–contact air glow discharge and ionic liquid–air glow discharge obey Ohm's law only up to a particular voltage. A sudden burst of the electrolyte is observed for currents above a critical current.

Type
Papers
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abdel Aal, A., Al-Salman, R., Al-Zoubi, M., Borissenko, N., Endres, F., Höfft, O., Prowald, A. and El Abedin, S. Z. 2011 Interfacial electrochemistry and electro deposition from some ionic liquids: in situ scanning tunneling microscopy, plasma electrochemistry, selenium and macroporous materials. Electrochim. Acta, 56, 1029510305.Google Scholar
Bogaerts, A., Neyts, E., Gijbels, R. and van der Mullen, J. 2002 Gas discharge plasmas and their applications. Spectrochim. Acta B, 57, 609658.CrossRefGoogle Scholar
Boulos, M. I., Fauchais, P. and Pfender, E. 1994 Thermal Plasmas: Fundamentals and Applications. New York: Plenum Press.CrossRefGoogle Scholar
Brettholle, M., Höfft, O., Klarhöfer, L., Mathes, S., Maus-Friedrichs, W., El Abedin, S. Z., Krischok, S., Janek, J. and Endres, F. 2010 Plasma electrochemistry in ionic liquids: deposition of copper nanoparticles. Phys. Chem. Chem. Phys., 12, 17501755.CrossRefGoogle ScholarPubMed
Brisset, J.-L., Moussa, D., Doubla, A., Hnatiuc, E., Hnatiuc, B., Youbi, G. K., Herry, J.-M., Naïtali, M. and Bellon-Fontaine, M.-N. 2008 Chemical reactivity of discharges and temporal post-discharges in plasma treatment of aqueous media: examples of gliding discharge treated solutions. Ind. Eng. Chem. Res. 47, 57615781.CrossRefGoogle Scholar
Bruggeman, P., Ribezl, E., Degroote, J., Vierendeels, J. and Leys, C. 2008 Plasma characteristics and electrical break down between metal and water electrodes. J. Optoelectron. Adv. Mater. 10 (8), 19641967.Google Scholar
Bruggeman, P., Schram, D., González, M. Á., Rego, R., Kong, M. G. and Leys, C. 2009 Characterization of a direct dc-excited discharge in water by optical emission spectroscopy. Plasma Sources Sci. Technol 18 025017 (113).CrossRefGoogle Scholar
Chen, F. F. 1974 Introduction to Plasma Physics. New York: Plenum Press.Google Scholar
El Abedin, S. Z. and Endres, F. 2009 Electrodeposition of nanocrystaline silver films and nanowires from the ionic liquid 1 ethyl 3 methylimidazolium trifluromethylsulfonate. Electrochim. Acta 54, 56735677.CrossRefGoogle Scholar
El Abedin, S. Z., Polleth, M., Meiss, S. A., Janek, J. and Endres, F. 2007a Ionic liquid as green electrolytes for the electrodeposition of nanomaterials. Green Chem. 9, 549553.CrossRefGoogle Scholar
El Abedin, S. Z., Saad, A. Y., Farag, H. K., Borisenko, N., Liu, Q. X. and Endres, F. 2007b Electrodepostion of selenium, indium and copper in air and water stable ionic liquid at variable temperatures. Electrochi. Acta 52, 27462754.CrossRefGoogle Scholar
Endres, F. 2002 Ionic liquids: solvents for the electrodeposition of metals and semiconductors. Chem. Phys. Chem. 3, 144154.3.0.CO;2-#>CrossRefGoogle ScholarPubMed
Endres, F., MacFarlane, D. and Abbott, A. (eds.) 2008 Electrodeposition from Ionic Liquids Weinheim, Germany: Wiley-VCH.CrossRefGoogle ScholarPubMed
Gai, K. 2006a Aqueous benzoquinone degradation induced by plasma with glow discharge electrolysis. Can. J. Anal. Sci. Spectrosc. 51, 4.Google Scholar
Gai, K. 2006b Aqueous diphenyl degradation induced by plasma with glow discharge electrolysis. J. Chin. Chem. Soc. 53, 627632.CrossRefGoogle Scholar
Gai, K. and Dong, Y.-J. 2005 Plasma induced degradation of azobenzene in water. J. Chin. Chem. Soc. 52, 273276.CrossRefGoogle Scholar
Gao, J. 2006 A novel technique for waste water treatment by contact glow discharge electrolysis. Pak. J. Biol. Sci 9 (2), 323329.CrossRefGoogle Scholar
Gubkin, A. 1887 Reduced matrix interferences compared to flames. J. Ann. Phys. Chem. 32, 114115.CrossRefGoogle Scholar
Harada, K., Suzuki, S. and Ishida, H. 1977 Syntheses of amino acids from unsaturated aliphatic carboxylic acid by contact glow discharge electrolysis. Spec. Exp 34 (1), 300331.Google Scholar
Harada, K., Terasawa, J. and Suzuki, S. 1978 Syntheses of uracil and thymine by contact glow-discharge electrolysis. Naturwissenschafte 65 (9), 259.CrossRefGoogle Scholar
He, P., Liu, H., Li, Z., Liu, Y., Xu, X. and Li, J. 2004 Electrochemical deposition of silver in room temperature ionic liquids and its surface enhanced Raman scattering effect. Langmui 20 (23), 1026010267.CrossRefGoogle ScholarPubMed
Hicking, A. and Ingram, M. D. 1964 Contact glow-discharge electrolysis. Trans. Faraday Soc. 60, 783793.CrossRefGoogle Scholar
Jinzhang, G., Aixiang, W., Yan, F., Jianlin, W., Dongping, M., Xiao, G., Yan, L. and Wu, Y. 2008 Analysis of energetic species caused by contact glow discharge electrolysis in aqueous solution. Plasma Sci. Technol. 10, 1.CrossRefGoogle Scholar
Kaneko, T., Baba, K., Harada, T. and Hatakeyama, R. 2009 Novel gas–liquid interfacial plasmas for synthesis of metal nanoparticles. Plasma Process. Polym. 6 (11), 713718; Kaneko, T., Baba, K. and Hatakeyama, R. 2009 Gas–liquid interfacial plasmas: basic properties and applications to nanomaterial synthesis. Plasma Phys. Control. Fusio 51, 124011; Kaneko, T., Baba, K. and Hatakeyama, R. 2009 Static gas–liquid interfacial direct current discharge plasmas using ionic liquid cathode. J. Appl. Phys 105, 103306; Kaneko, T., Chen, Q., Harada, T. and Hatakeyama, R. 2011 Structural and reactive kinetics in gas–liquid interfacial plasmas. Plasma Sources Sci. Technol. 20, 034014.CrossRefGoogle Scholar
Karnasagar, D. and Shekhar, R. 2009 Development of electrolyte cathode glow discharge atomic emission spectroscopy for the analysis of elements at trace and ultra trace levels. CCM, Hyderabad, BARC News Lette 14 (301).Google Scholar
Kokorin, A. (ed.) 2011 Ionic Liquids: Theory, Properties, New Approaches (chapter 22). ISBN 978-953-307-349-1, DOI: 10.5772/603, InTech.Google Scholar
Lal, A., Bleuler, H. and Wüthrich, R. 2008 Fabrication of metallic nanoparticles by electrochemical discharges. Electrochem. Commun. 10, 488491.CrossRefGoogle Scholar
Liang, X., Wang, Z.-J. and Liu, C.-J. 2010 Size-controlled synthesis of colloidal gold nanoparticles at room temperature under the influence of glow discharge. Nanoscale Res. Lett. 5, 124129.CrossRefGoogle Scholar
Meiss, S. A., Rohnke, M., Kienle, L., El Abedin, S. Z., Endres, F. and Janek, J. 2007 Employing plasmas as gaseous electrodes at the free surface of ionic liquids: deposition of nanocrystalline silver particles. Chem. Phys. Chem. 8, 5053.CrossRefGoogle ScholarPubMed
Ogumi, Z., Uchimoto, Y. and Takehara, Z.-i. 1995 Electrochemistry using plasma. Adv. Mater 7 (3), 323325.CrossRefGoogle Scholar
Paulmier, T., Bell, J. M. and Fredericks, P. M. 2007 Deposition of nano-crystalline graphite films by cathodic plasma electrolysis. Thin Solid Film 515 (5), 29262934.CrossRefGoogle Scholar
Paulmier, T., Bell, J. M. and Fredericks, P. M. 2008 Plasma electrolytic deposition of titanium dioxide nanorods and nano-particles. J. Mater. Process. Technol 208 (1–3), 117123.CrossRefGoogle Scholar
Poelleth, M., Meiss, A., Rohnke, M., Kienle, L., El Abedin, S. Z., Endres, F. and Janek, J. 2007 Deposition of metal nanoparticles at ionic-liquid| plasma interfaces. In: Proc. of the 28th ICPIG, Prague, 15–20 July, Topic number 13.Google Scholar
Polyakov, O. V., Badalyan, A. M. and Bakhturova, L. F. 2002 The water degradation yield and spatial distribution of primary radicals in the near-discharge volume of an lectrolytic cathode. High Energy Chem 36 (5), 280284.CrossRefGoogle Scholar
Polyakov, O. V., Badalyan, A. M. and Bakhturova, L. F. 2003 The yields of radical products in water decomposition under discharges with electrolytic electrodes. High Energy Chem 37 (5), 322327.CrossRefGoogle Scholar
Susanta, K. S. G., Rajeshwar, S. and Ashok, K. S. A. 1998 Study on the origin of nonfaradaic behavior of anodic contact glow discharge electrolysis. J. Electrochem. Soc 145 (7), 22092213.Google Scholar
Vennekamp, M. and Janek, J. 2001 Plasma electrochemical growth of ion-conducting AgBr and AgCl. Solid State Ionics 141–142, 7180.CrossRefGoogle Scholar
Vennekamp, M. and Janek, J. 2005 Control of the surface morphology of solid electrolyte films during field driven growth in a reactive plasma. Phys. Chem. Chem. Phys. 7, 666677.CrossRefGoogle Scholar
Vyalykh, D. V., Dubinov, A. E., Mikheev, K. E., Lashmanov, Yu. N., L'vov, I. L., Sadovo, S. A. and Selemir, V. D. 2005 Experimental study of the stability of the interface between a liquid electrolyte and the glow discharge plasma. Tech. Phys 50 (10), 13741375.CrossRefGoogle Scholar
Wang, X.-F., Xu, J.-J. and Chen, H. Y. 2008 Dendritic CdO nanomaterials prepared by electrochemical deposition and their electrogenerated chemiluminescence behaviors in aqueous systems. J. Phys. Chem. C 112 (18), 71517157.Google Scholar
Wei, Z. and Liu, C.-J. 2011 Synthesis of monodisperse gold nanoparticles in ionic liquid by applying room temperature plasma. Mater. Lett. 65, 353355.CrossRefGoogle Scholar
Wüthrich, R. and Allagui, A. 2010 Building micro and nanosystems with electrochemical discharges. Electrochim. Acta 55, 81898196.CrossRefGoogle Scholar
Xie, Y.-B. and Liu, C.-J. 2008 Stability of ionic liquids under the influence of glow discharge plasmas. Plasma Process. Polym. 5, 239245.CrossRefGoogle Scholar
Yan, Z. C., Li, C. and Lin, W. H. 2009 Hydrogen generation by glow discharge plasma electrolysis of methanol solutions. Int. J. Hydrog. Energ 3 (4), 4855.CrossRefGoogle Scholar
Yerokhin, A.L., Nie, X., Leyland, A., Matthews, A. and Dowey, S.J. 1999 Plasma electrolysis for surface engineering. Surf. Coat. Technol. 122, 7393.CrossRefGoogle Scholar
Zong-cheng, Y., Li, C. and Hong-lin, W. 2006 Experimental study of plasma under-liquid electrolysis in hydrogen generation. Chin. J. Process Eng 6 (3), 396401.Google Scholar