Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-26T15:31:20.654Z Has data issue: false hasContentIssue false

Controlled ionization-induced injection by tailoring the gas-density profile in laser wakefield acceleration

Published online by Cambridge University Press:  07 February 2012

MING ZENG
Affiliation:
Key Laboratory for Laser Plasmas (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China (zmsheng@sjtu.edu.cn)
NASR A. M. HAFZ
Affiliation:
Key Laboratory for Laser Plasmas (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China (zmsheng@sjtu.edu.cn)
KAZUHISA NAKAJIMA
Affiliation:
Key Laboratory for Laser Plasmas (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China (zmsheng@sjtu.edu.cn) High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, Ibaraki 305-0081, Japan Shanghai Institute of Optics and Fine Mechanics, CAS, Shanghai 201800, China
LI-MING CHEN
Affiliation:
Key Laboratory for Laser Plasmas (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China (zmsheng@sjtu.edu.cn) Beijing National Laboratory of Condensed Matter Physics, Institute of Physics, CAS, Beijing 100190, China
WEI LU
Affiliation:
Department of Engineering Physics, Tsinghua University, Beijing 100084, China Department of Physics and Astronomy, UCLA, Los Angeles, CA 90095, USA
WARREN B. MORI
Affiliation:
Department of Electrical Engineering, UCLA, Los Angeles, CA 90095, USA Department of Physics and Astronomy, UCLA, Los Angeles, CA 90095, USA
ZHENG-MING SHENG
Affiliation:
Key Laboratory for Laser Plasmas (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China (zmsheng@sjtu.edu.cn) Beijing National Laboratory of Condensed Matter Physics, Institute of Physics, CAS, Beijing 100190, China
JIE ZHANG
Affiliation:
Key Laboratory for Laser Plasmas (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China (zmsheng@sjtu.edu.cn) Beijing National Laboratory of Condensed Matter Physics, Institute of Physics, CAS, Beijing 100190, China

Abstract

Ionization-induced injection into a laser-driven wakefield is studied using 2½D OSIRIS simulations. A laser propagates into a gas mixture of 99.5% helium and 0.5% nitrogen with gas density of each rising linearly from 0 to a peak, after which these remain constant. Simulations show that the process can be controlled by varying the scale length of an up-ramp, the laser intensity, and the maximum plasma density. The injection process is controlled by the bubble radius decreasing as laser propagates up the density gradient and laser self-focusing in the flat-top region. A beam with a central energy of 350 MeV and an energy spread (FWHM) of 1.62% was obtained for an up-ramp length of 135 μm, a normalized vector potential of 2, and a density of 7 × 1018cm−3 (assuming a 0.8 μm wavelength laser).

Type
Papers
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Chen, M., Sheng, Z.-M., Ma, Y.-Y. and Zhang, J. 2006 Electron injection and trapping in a laser wakefield by field ionization to high-charge states of gases. J. Appl. Phys. 99, 056109.CrossRefGoogle Scholar
Clayton, C. E., Ralph, J. E., Albert, F., Fonseca, R. A., Glenzer, S. H., Joshi, C., Lu, W., Marsh, K. A., Martins, S. F., Mori, W. B. et al. 2010 Self-guided laser wakefield acceleration beyond 1 gev using ionization-induced injection. Phys. Rev. Lett. 105 (10), 105003.CrossRefGoogle ScholarPubMed
Esarey, E., Schroeder, C. B. and Leemans, W. P. 2009 Physics of laser-driven plasma-based electron accelerators. Rev. Mod. Phys. 81 (3), 12291285.CrossRefGoogle Scholar
Faure, J., Glinec, Y., Pukhov, A., Kiselev, S., Gordienko, S., Lefebvre, E., Rousseau, J.-P., Burgy, F. and Malka, V. 2004 A laser-plasma accelerator producing monoenergetic electron beams. Nature 431 (7008), 541544.CrossRefGoogle ScholarPubMed
Faure, J., Rechatin, C., Norlin, A., Lifschitz, A., Glinec, Y. and Malka, V. 2006 Controlled injection and acceleration of electrons in plasma wakefields by colliding laser pulses. Nature 444 (7120), 737739.CrossRefGoogle ScholarPubMed
Fonseca, R. A., Silva, L. O., Tsung, F. S., Decyk, V. K., Lu, W., Ren, C., Mori, W. B., Deng, S., Lee, S., Katsouleas, T. et al. 2002 Osiris: a three-dimensional, fully relativistic particle in cell code for modeling plasma-based accelerators. Computational Science – ICCS 2002 Lecture Notes in Computer Science, vol. 2331/2002, pp. 342351.CrossRefGoogle Scholar
Geddes, C. G. R., Nakamura, K., Plateau, G. R., Toth, C., Cormier-Michel, E., Esarey, E., Schroeder, C. B., Cary, J. R. and Leemans, W. P. 2008 Plasma-density-gradient injection of low absolute-momentum-spread electron bunches. Phys. Rev. Lett. 100 (21), 215004.CrossRefGoogle ScholarPubMed
Geddes, C. G. R., Toth, C., van Tilborg, J., Esarey, E., Schroeder, C. B., Bruhwiler, D., Nieter, C., Cary, J. and Leemans, W. P. 2004 Monoenergetic beams of relativistic electrons from intense laserplasma interactions. Nature 431 (7008), 538541.CrossRefGoogle Scholar
Katsouleas, T. 1986 Physical mechanisms in the plasma wakefield accelerator. Phys. Rev. A 33, 20562064.CrossRefGoogle Scholar
Liu, J. S., Xia, C. Q., Wang, W. T., Lu, H. Y., Wang, Ch., Deng, A. H., Li, W. T., Zhang, H., Liang, X. Y., Leng, Y. X. et al. 2011 All-optical cascaded laser wakefield accelerator using ionization-induced injection. Phys. Rev. Lett. 107 (3), 035001.CrossRefGoogle ScholarPubMed
Lu, W., Huang, C., Zhou, M., Mori, W. B. and Katsouleas, T. 2006a Nonlinear theory for relativistic plasma wakefields in the blowout regime. Phys. Rev. Lett. 96, 165002.CrossRefGoogle ScholarPubMed
Lu, W., Huang, C., Zhou, M., Tzoufras, M., Tsung, F. S., Mori, W. B. and Katsouleas, T. 2006b A nonlinear theory for multidimensional relativistic plasma wave wakefields. Phys. Plasmas 13 (5), 056709.CrossRefGoogle Scholar
Lu, W., Tzoufras, M., Joshi, C., Tsung, F. S., Mori, W. B., Vieira, J., Fonseca, R. A. and Silva, L. O. 2007 Generating multi-gev electron bunches using single stage laser wakefield acceleration in a 3D nonlinear regime. Phys. Rev. ST Accel. Beams 10 (6), 061301.CrossRefGoogle Scholar
Malka, V., Fritzler, S., Lefebvre, E., Aleonard, M.-M., Burgy, F., Chambaret, J.-P., Chemin, J.-F., Krushelnick, K., Malka, G., Mangles, S. P. D. et al. 2002 Electron acceleration by a wakefield forced by an intense ultrashort laser pulse. Science 298 (5598), 15961600.CrossRefGoogle Scholar
Mangles, S. P. D., Murphy, C. D., Najmudin, Z., Thomas, A. G. R., Collier, J. L., Dangor, A. E., Divall, E. J., Foster, P. S., Gallacher, J. G., Hooker, C. J. et al. 2004 Monoenergetic beams of relativistic electrons from intense laserplasma interactions. Nature 431 (7008), 535538.CrossRefGoogle ScholarPubMed
McGuffey, C., Thomas, A. G. R., Schumaker, W., Matsuoka, T., Chvykov, V., Dollar, F. J., Kalintchenko, G., Yanovsky, V., Maksimchuk, A., Krushelnick, K. et al. 2010 Ionization-induced trapping in a laser wakefield accelerator. Phys. Rev. Lett. 104 (2), 025004.CrossRefGoogle Scholar
Mori, W. B. 1997 The physics of the nonlinear optics of plasmas at relativistic intensities for short-pulse lasers. IEEE J. Quantum Electron. 33 (11), 19421953.CrossRefGoogle Scholar
Oz, E., Deng, S., Katsouleas, T., Muggli, P., Barnes, C. D., Blumenfeld, I., Decker, F. J., Emma, P., Hogan, M. J., Ischebeck, R. et al. 2007 Ionization-induced electron trapping in ultrarelativistic plasma wakes. Phys. Rev. Lett. 98, 084801.CrossRefGoogle ScholarPubMed
Pak, A., Marsh, K. A., Martins, S. F., Lu, W., Mori, W. B. and Joshi, C. 2010 Injection and trapping of tunnel-ionized electrons into laser-produced wakes. Phys. Rev. Lett. 104 (2), 025003.CrossRefGoogle ScholarPubMed
Pollock, B. B., Clayton, C. E., Ralph, J. E., Albert, F., Davidson, A., Divol, L., Filip, C., Glenzer, S. H., Herpoldt, K., Lu, W. et al. 2011 Demonstration of a narrow energy spread, ~0.5 gev electron beam from a two-stage laser wakefield accelerator. Phys. Rev. Lett. 107 (4), 045001.CrossRefGoogle ScholarPubMed
Pukhov, A. and Meyer-ter Vehn, J. 2002 Laser wake field acceleration: the highly non-linear broken-wave regime. Appl. Phys. B (Lasers and Optics) 74, 355361, 10.1007/s003400200795.CrossRefGoogle Scholar
Schmid, K., Buck, A., Sears, C. M. S., Mikhailova, J. M., Tautz, R., Herrmann, D., Geissler, M., Krausz, F. and Veisz, L. 2010 Density-transition-based electron injector for laser-driven wakefield accelerators. Phys. Rev. ST Accel. Beams 13 (9), 091301.CrossRefGoogle Scholar
Sun, G.-Z., Ott, E., Lee, Y. C. and Guzdar, P. 1987 Self-focusing of short intense pulses in plasmas. Phys. Fluids 30 (2), 526532.CrossRefGoogle Scholar
Tajima, T. and Dawson, J. M. 1979 Laser electron accelerator. Phys. Rev. Lett. 43 (4), 267270.CrossRefGoogle Scholar
Tsung, F. S., Narang, R., Mori, W. B., Joshi, C., Fonseca, R. A. and Silva, L. O. 2004 Near-gev-energy laser-wakefield acceleration of self-injected electrons in a centimeter-scale plasma channel. Phys. Rev. Lett. 93, 185002.CrossRefGoogle Scholar