Skip to main content Accessibility help
×
Home

Controlled ionization-induced injection by tailoring the gas-density profile in laser wakefield acceleration

  • MING ZENG (a1), NASR A. M. HAFZ (a1), KAZUHISA NAKAJIMA (a1) (a2) (a3), LI-MING CHEN (a1) (a4), WEI LU (a5) (a6), WARREN B. MORI (a7) (a6), ZHENG-MING SHENG (a1) (a4) and JIE ZHANG (a1) (a4)...

Abstract

Ionization-induced injection into a laser-driven wakefield is studied using 2½D OSIRIS simulations. A laser propagates into a gas mixture of 99.5% helium and 0.5% nitrogen with gas density of each rising linearly from 0 to a peak, after which these remain constant. Simulations show that the process can be controlled by varying the scale length of an up-ramp, the laser intensity, and the maximum plasma density. The injection process is controlled by the bubble radius decreasing as laser propagates up the density gradient and laser self-focusing in the flat-top region. A beam with a central energy of 350 MeV and an energy spread (FWHM) of 1.62% was obtained for an up-ramp length of 135 μm, a normalized vector potential of 2, and a density of 7 × 1018cm−3 (assuming a 0.8 μm wavelength laser).

Copyright

References

Hide All
Chen, M., Sheng, Z.-M., Ma, Y.-Y. and Zhang, J. 2006 Electron injection and trapping in a laser wakefield by field ionization to high-charge states of gases. J. Appl. Phys. 99, 056109.
Clayton, C. E., Ralph, J. E., Albert, F., Fonseca, R. A., Glenzer, S. H., Joshi, C., Lu, W., Marsh, K. A., Martins, S. F., Mori, W. B. et al. 2010 Self-guided laser wakefield acceleration beyond 1 gev using ionization-induced injection. Phys. Rev. Lett. 105 (10), 105003.
Esarey, E., Schroeder, C. B. and Leemans, W. P. 2009 Physics of laser-driven plasma-based electron accelerators. Rev. Mod. Phys. 81 (3), 12291285.
Faure, J., Glinec, Y., Pukhov, A., Kiselev, S., Gordienko, S., Lefebvre, E., Rousseau, J.-P., Burgy, F. and Malka, V. 2004 A laser-plasma accelerator producing monoenergetic electron beams. Nature 431 (7008), 541544.
Faure, J., Rechatin, C., Norlin, A., Lifschitz, A., Glinec, Y. and Malka, V. 2006 Controlled injection and acceleration of electrons in plasma wakefields by colliding laser pulses. Nature 444 (7120), 737739.
Fonseca, R. A., Silva, L. O., Tsung, F. S., Decyk, V. K., Lu, W., Ren, C., Mori, W. B., Deng, S., Lee, S., Katsouleas, T. et al. 2002 Osiris: a three-dimensional, fully relativistic particle in cell code for modeling plasma-based accelerators. Computational Science – ICCS 2002 Lecture Notes in Computer Science, vol. 2331/2002, pp. 342351.
Geddes, C. G. R., Nakamura, K., Plateau, G. R., Toth, C., Cormier-Michel, E., Esarey, E., Schroeder, C. B., Cary, J. R. and Leemans, W. P. 2008 Plasma-density-gradient injection of low absolute-momentum-spread electron bunches. Phys. Rev. Lett. 100 (21), 215004.
Geddes, C. G. R., Toth, C., van Tilborg, J., Esarey, E., Schroeder, C. B., Bruhwiler, D., Nieter, C., Cary, J. and Leemans, W. P. 2004 Monoenergetic beams of relativistic electrons from intense laserplasma interactions. Nature 431 (7008), 538541.
Katsouleas, T. 1986 Physical mechanisms in the plasma wakefield accelerator. Phys. Rev. A 33, 20562064.
Liu, J. S., Xia, C. Q., Wang, W. T., Lu, H. Y., Wang, Ch., Deng, A. H., Li, W. T., Zhang, H., Liang, X. Y., Leng, Y. X. et al. 2011 All-optical cascaded laser wakefield accelerator using ionization-induced injection. Phys. Rev. Lett. 107 (3), 035001.
Lu, W., Huang, C., Zhou, M., Mori, W. B. and Katsouleas, T. 2006a Nonlinear theory for relativistic plasma wakefields in the blowout regime. Phys. Rev. Lett. 96, 165002.
Lu, W., Huang, C., Zhou, M., Tzoufras, M., Tsung, F. S., Mori, W. B. and Katsouleas, T. 2006b A nonlinear theory for multidimensional relativistic plasma wave wakefields. Phys. Plasmas 13 (5), 056709.
Lu, W., Tzoufras, M., Joshi, C., Tsung, F. S., Mori, W. B., Vieira, J., Fonseca, R. A. and Silva, L. O. 2007 Generating multi-gev electron bunches using single stage laser wakefield acceleration in a 3D nonlinear regime. Phys. Rev. ST Accel. Beams 10 (6), 061301.
Malka, V., Fritzler, S., Lefebvre, E., Aleonard, M.-M., Burgy, F., Chambaret, J.-P., Chemin, J.-F., Krushelnick, K., Malka, G., Mangles, S. P. D. et al. 2002 Electron acceleration by a wakefield forced by an intense ultrashort laser pulse. Science 298 (5598), 15961600.
Mangles, S. P. D., Murphy, C. D., Najmudin, Z., Thomas, A. G. R., Collier, J. L., Dangor, A. E., Divall, E. J., Foster, P. S., Gallacher, J. G., Hooker, C. J. et al. 2004 Monoenergetic beams of relativistic electrons from intense laserplasma interactions. Nature 431 (7008), 535538.
McGuffey, C., Thomas, A. G. R., Schumaker, W., Matsuoka, T., Chvykov, V., Dollar, F. J., Kalintchenko, G., Yanovsky, V., Maksimchuk, A., Krushelnick, K. et al. 2010 Ionization-induced trapping in a laser wakefield accelerator. Phys. Rev. Lett. 104 (2), 025004.
Mori, W. B. 1997 The physics of the nonlinear optics of plasmas at relativistic intensities for short-pulse lasers. IEEE J. Quantum Electron. 33 (11), 19421953.
Oz, E., Deng, S., Katsouleas, T., Muggli, P., Barnes, C. D., Blumenfeld, I., Decker, F. J., Emma, P., Hogan, M. J., Ischebeck, R. et al. 2007 Ionization-induced electron trapping in ultrarelativistic plasma wakes. Phys. Rev. Lett. 98, 084801.
Pak, A., Marsh, K. A., Martins, S. F., Lu, W., Mori, W. B. and Joshi, C. 2010 Injection and trapping of tunnel-ionized electrons into laser-produced wakes. Phys. Rev. Lett. 104 (2), 025003.
Pollock, B. B., Clayton, C. E., Ralph, J. E., Albert, F., Davidson, A., Divol, L., Filip, C., Glenzer, S. H., Herpoldt, K., Lu, W. et al. 2011 Demonstration of a narrow energy spread, ~0.5 gev electron beam from a two-stage laser wakefield accelerator. Phys. Rev. Lett. 107 (4), 045001.
Pukhov, A. and Meyer-ter Vehn, J. 2002 Laser wake field acceleration: the highly non-linear broken-wave regime. Appl. Phys. B (Lasers and Optics) 74, 355361, 10.1007/s003400200795.
Schmid, K., Buck, A., Sears, C. M. S., Mikhailova, J. M., Tautz, R., Herrmann, D., Geissler, M., Krausz, F. and Veisz, L. 2010 Density-transition-based electron injector for laser-driven wakefield accelerators. Phys. Rev. ST Accel. Beams 13 (9), 091301.
Sun, G.-Z., Ott, E., Lee, Y. C. and Guzdar, P. 1987 Self-focusing of short intense pulses in plasmas. Phys. Fluids 30 (2), 526532.
Tajima, T. and Dawson, J. M. 1979 Laser electron accelerator. Phys. Rev. Lett. 43 (4), 267270.
Tsung, F. S., Narang, R., Mori, W. B., Joshi, C., Fonseca, R. A. and Silva, L. O. 2004 Near-gev-energy laser-wakefield acceleration of self-injected electrons in a centimeter-scale plasma channel. Phys. Rev. Lett. 93, 185002.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Controlled ionization-induced injection by tailoring the gas-density profile in laser wakefield acceleration

  • MING ZENG (a1), NASR A. M. HAFZ (a1), KAZUHISA NAKAJIMA (a1) (a2) (a3), LI-MING CHEN (a1) (a4), WEI LU (a5) (a6), WARREN B. MORI (a7) (a6), ZHENG-MING SHENG (a1) (a4) and JIE ZHANG (a1) (a4)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed