Skip to main content Accessibility help
×
Home

Continued fraction expansions for the plasma dispersion function

  • J. H. McCabe (a1)

Abstract

Two continued fraction expansions for the plasma dispersion function are given. The first is a very simple expansion for which error estimates can be obtained and which provides better approximations as the modulus of the argument increases. The second, while not so simple, provides whole range approximations.

Copyright

References

Hide All
Fried, B. D. & Conte, S. D. 1961 The Plasma Dispersion Function. Academic.
Martin, P., Donoso, G. & Zamudio-Cristi, J. 1980 J. Math. Phys. 21, 280.
McCabe, J. H. 1974 Math. Comp. 28, 811.
McCabe, J. H. 1975 J. Inst. Maths. Applics. 15, 363.
McCabe, J. H. & Murphy, J. A. 1976 J. Inst. Math. Applics. 17, 233.
Murphy, J. A. & O'Donohoe, M. R. 1977 J. App. Maths. Phys. 28, 1121.
Németh, G., Ág, Á. & Páris, G. Y. 1981 J. Math. Phys. 22, 1192.
Peratt, A. L. 1984 J. Maths. Phys. 25, 466.
Rönnmark, K. 1983 Plasma Phys. 25, 699.
Sato, M. 1984 J. Plasma Phys. 31, 325.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Continued fraction expansions for the plasma dispersion function

  • J. H. McCabe (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed