Skip to main content Accessibility help

Computational methods for plasma fluid models

  • G. Fuhr (a1), P. Beyer (a1) and S. Benkadda (a1)


Challenges in plasma physics are wide. Investigation and advances are made in experiments but at the same time, to understand and to reach the experimental limits, accurate numerical simulations are required from systems of nonlinear equations. The numerical challenges of solving the associated fluid equations are discussed in this paper. Using the framework of the finite difference discretization, the most widely used methods for the problems linked to the diffusion or advection operators are presented.


Corresponding author

Email address for correspondence:


Hide All
Amdahl, G. M. 1967 Validity of the single processor approach to achieving large scale computing capabilities. In Proceedings of the April 18–20, 1967, Spring Joint Computer Conference, AFIPS ’67 (Spring), pp. 483485. ACM.
Arakawa, A. 1966 Computational design for long-term numerical integration of the equations of fluid motion: two-dimensional incompressible flow. Part I. J. Comput. Phys. 1 (1), 119143.
Balay, S., Abhyankar, S., Adams, M. F., Brown, J., Brune, P., Buschelman, K., Dalcin, L., Eijkhout, V., Gropp, W. D., Kaushik, D. et al. 2016 PETSc webpage.
Beyer, P., Benkadda, S. & Garbet, X. 2000 Proper orthogonal decomposition and galerkin projection for a three-dimensional plasma dynamical system. Phys. Rev. E 61 (1), 813823.
Biskamp, D. 1993 Nonlinear Magnetohydrodynamics. Cambridge University Press.
Boris, J. P. & Book, D. L. 1997 Flux-corrected transport. J. Comput. Phys. 135 (2), 172186.
Braginskii, S. I. 1965 Transport processes in a plasma. Rev. Plasma Phys. 1, 205311.
Brock, D. & Horton, W. 1982 Toroidal drift-wave fluctuations driven by ion pressure gradients. Plasma Phys. 24 (3), 271.
Butcher, J. C. 2008 Numerical Methods for Ordinary Differential Equations, 2nd edn. Wiley.
Canuto, C., Hussaini, M., Quarteroni, A. & Zang, T. 1988 Spectral Methods in Fluid Dynamics, Springer Series in Computational Physics. Springer.
Chapman, B., Jost, G. & Van der Pas, R. 2007 Using OpenMP: Portable Shared Memory Parallel Programming. MIT Press.
Coiffier, J. 2012 Fundamentals of Numerical Weather Prediction. Cambridge University Press.
Courant, R., Friedrichs, K. & Lewy, H. 1928 über die partiellen differenzengleichungen der mathematischen physik. Math. Ann. 100 (1), 3274.
Courant, R., Isaacson, E. & Rees, M. 1952 On the solution of nonlinear hyperbolic differential equations by finite differences. Commun. Pure Appl. Maths 5 (3), 243255.
Crouseilles, N., Kuhn, M. & Latu, G. 2015 Comparison of numerical solvers for anisotropic diffusion equations arising in plasma physics. J. Sci. Comput. 65 (3), 10911128.
D’haeseleer, W. D. 1991 Flux Coordinates and Magnetic Field Structure: A Guide to a Fundamental Tool of Plasma Structure, Springer Series in Computational Physics. Springer.
Durran, D. R. 1999 Numerical Methods for Wave Equations in Geophysical Fluid Dynamics. Springer.
Durran, D. R. 2010 Numerical Methods for Fluid Dynamics, 2nd edn. Springer.
Ferszinger, H. 2002 Computational Methods for Fluid Dynamics. Springer.
FFTW 2015 FFTW webpage.
Freidberg, J. P. 2007 Plasma Physics and Fusion Energy. Cambridge University Press.
Godunov, S. K. 1959 Finite difference method for numerical computation of discontinuous solutions of the equations of fluid dynamics. Mat. Sb. 47, 271300.
Griffiths, D. F. 2010 Numerical Methods for Ordinary Differential Equations. Springer.
Gustafson, J. L. 1988 Reevaluating Amdahl’s law. Commun. ACM 31 (5), 532533.
Hairer, E. 2006 Geometric Numerical Integration. Springer.
Hirsch, C. 2007 Numerical Computation of Internal and External Flows, Volume 1, Fundamentals of Computational Fluid Dynamics, 2nd edn. Butterworth-Heinemann.
Horton, W. & Estes, R. D. 1980 Fluid simulation of ion pressure gradient driven drift modes. Plasma Phys. 22 (7), 663.
Jardin, S. 2010 Computational Methods in Plasma Physics. CRC Press.
Jardin, S. 2011 Review of implicit methods for the magnetohydrodynamic description of magnetically confined plasmas. J. Comput. Phys. 231, 822838.
Karniadakis, G. E., Israeli, M. & Orszag, S. A. 1991 High-order splitting methods for the incompressible Navier–Stokes equations. J. Comput. Phys. 97 (2), 414443.
Kuhn, M., Latu, G., Genaud, S. & Crouseilles, N. 2013 Optimization and parallelization of emerged on shared memory architecture. In Proceedings of the 2013 15th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing, SYNASC ’13, pp. 503510. IEEE Computer Society.
Lax, P. & Wendroff, B. 1960 Systems of conservation laws. Commun. Pure Appl. Maths 13 (2), 217237.
Leveque, R. J. 1992 Numerical Methods for Conservation Laws, Lectures in Mathematics. Birkhäuser.
Leveque, R. J. 2002 Finite Volume Methods for Hyperbolic Problems. Cambridge University Press.
Lomax, H., Pulliam, T. H. & Zingg, D. W. 2001 Fundamentals of Computational Fluid Dynamics. Springer.
Message Passing Interface Forum2015 MPI: A Message-Passing Interface Standard Version 3.1. High Performance Computing Center Stuttgart (HLRS).
MUMPS2015 MUMPS webpage.
Naulin, V. & Nielsen, A. H. 2003 Accuracy of spectral and finite difference schemes in 2d advection problems. SIAM J. Sci. Comput. 25 (1), 104126.
OpenMP2015 OpenMP tutorial from LLNL.
PasTiX2015 PasTiX webpage.
Patterson, G. S. & Orszag, S. A. 1971 Spectral calculations of isotropic turbulence: efficient removal of aliasing interactions. Phys. Fluids 14 (11), 25382541.
Platzman, G. W. 1961 An approximation to the product of discrete functions. J. Meteorol. 18 (1), 3137.
Press, W. H., Teukolsky, S. A., Vetterling, W. T. & Flannery, B. P. 2007 Numerical Recipes: The Art of Scientific Computing, 3rd edn. Cambridge University Press.
Rosen, J. S.1967 The Runge–Kutta equations by quadrature methods. NASA Tech. Rep. TR-R-275.
Schneider, K., Kolomenskiy, D. & Deriaz, E. 2013 Is the CFL Condition Sufficient? Some Remarks. pp. 139146. Birkhäuser Boston.
Scott, B. D. 1997 Three-dimensional computation of drift Alfvén turbulence. Plasma Phys. Control. Fusion 39 (10), 1635.
Shu, C.-W. 1998 Essentially Non-Oscillatory and Weighted Essentially Non-Oscillatory Schemes for Hyperbolic Conservation Laws. pp. 325432. Springer.
Shu, C.-W. & Osher, S. 1988 Efficient implementation of essentially non-oscillatory shock-capturing schemes. J. Comput. Phys. 77 (2), 439471.
Smith, G. D. 1978 Numerical Solution of Partial Differential Equations, 2nd edn. Clarendon.
SuperLU2015 SuperLU webpage.∼xiaoye/SuperLU/.
Suresh, A. & Huynh, H. T. 1997 Accurate monotonicity-preserving schemes with Runge–Kutta time stepping. J. Comput. Phys. 136 (1), 8399.
Wesson, J. 1997 Tokamaks, 2nd edn. Clarendon.
Zhengfu, X. & Shu, C.-W. 2005 Anti-diffusive flux corrections for high order finite difference WENO schemes. J. Comput. Phys. 205 (2), 458485.
MathJax is a JavaScript display engine for mathematics. For more information see

Related content

Powered by UNSILO

Computational methods for plasma fluid models

  • G. Fuhr (a1), P. Beyer (a1) and S. Benkadda (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.