Skip to main content Accessibility help

Collisional alpha transport in a weakly non-quasisymmetric stellarator magnetic field

  • Peter J. Catto (a1)
  • Please note a correction has been issued for this article.


Alpha particle confinement is a serious concern in stellarators and provides strong motivation for optimizing magnetic field configurations. In addition to the collisionless confinement of trapped alphas in stellarators, excessive collisional transport of the trapped alpha particles must be avoided while they tangentially drift due to the magnetic gradient (the $\unicode[STIX]{x1D735}B$ drift). The combination of pitch angle scatter off the background ions and the $\unicode[STIX]{x1D735}B$ drift gives rise to two narrow boundary layers in the trapped region. The first is at the trapped–passing boundary and enables the finite trapped response to be matched to the vanishing passing response of the alphas. The second layer is a region that encompasses the somewhat more deeply trapped alphas with vanishing tangential $\unicode[STIX]{x1D735}B$ drift. Away from (and between) these boundary layers, collisions are ineffective and the alpha $\unicode[STIX]{x1D735}B$ drift simply balances the small radial drift of the trapped alphas. As this balance does not vanish as the trapped–passing boundary is approached, the first collisional boundary layer is necessary and gives rise to $\surd \unicode[STIX]{x1D708}$ transport, with $\unicode[STIX]{x1D708}$ the collision frequency. The vanishing of the tangential drift results in a separate, somewhat wider boundary layer, and significantly stronger superbanana plateau transport that is independent of collisionality. The constraint imposed by the need to avoid significant energy depletion loss in the slowing down tail distribution function sets the allowed departure of a stellarator from an optimal quasisymmetric configuration.


Corresponding author

Email address for correspondence:


Hide All
Beidler, C. D., Allmaier, K., Isaev, M. Y., Kasilov, S. V., Kernbichler, W., Leitold, G. O., Maaßberg, H., Mikkelsen, D. R., Murakami, S., Schmidt, M. et al. 2011 Benchmarking of the mono-energetic transport coefficients – results from the International Collaboration on Neoclassical Transport in Stellarators (ICNTS). Nucl. Fusion 51, 076001, 28 pp.
Beidler, C. D. & D’haeseleer, W. D. 1995 A general solution of the ripple-averaged kinetic equation (GSRAKE). Plasma Phys. Control. Fusion 37, 463490.
Boozer, A. H. 1981 Plasma equilibrium with rational magnetic surfaces. Phys. Fluids 24, 19992003.
Boozer, A. H. 1983 Transport and isomorphic equilibria. Phys. Fluids 26, 496499.
Boozer, A. H. 1995 Quasi-helical symmetry in stellarators. Plasma Phys. Control. Fusion 37, A103A117.
Calvo, I., Parra, F. I., Velasco, J. L. & Alonso, J. A. 2017 The effect of tangential drifts on neoclassical transport in stellarators close to omnigeneity. Plasma Phys. Control. Fusion 59, 055014, 19pp.
Catto, P. J. 2018 Ripple modifications to alpha transport in tokamaks. J. Plasma Phys. 84, 905840508, 39pp.
Catto, P. J. 2019 Collisional alpha transport in a weakly rippled magnetic field. J. Plasma Phys. 85, 905850203, 16pp.
Garren, D. A. & Boozer, A. H. 1991a Magnetic field strength of toroidal plasma equilibria. Phys. Fluids B 3, 28052821.
Garren, D. A. & Boozer, A. H. 1991b Existence of quasihelically symmetric stellarators. Phys. Fluids B 3, 28222834.
Gates, D. A., Boozer, A. H., Brown, T., Breslau, J., Curreli, D., Landreman, M., Lazerson, S. A., Lore, J., Mynick, H., Neilson, G. H. et al. 2017 Recent advances in stellarator optimization. Nucl. Fusion 57, 126064, 9pp.
Galeev, A. A. & Sagdeev, R. Z. 1970 Paradoxes of classical diffusion of plasma in toroidal magnetic traps. Sov. Phys. Uspekhi 12, 810811.
Galeev, A. A. & Sagdeev, R. Z. 1979 Theory of neoclassical diffusion. In Reviews of Plasma Physics (ed. Leontovich, M. A.), vol. 7, pp. 257343. Consultants Bureau.
Galeev, A. A., Sagdeev, R. Z., Furth, H. P. & Rosenbluth, M. N. 1969 Plasma diffusion in a toroidal stellarator. Phys. Rev. Lett. 22, 511514.
Henneberg, S. A., Drevlak, M., Nührenberg, C., Beidler, C. D., Turkin, Y., Loizu, J. & Helander, P. 2019 Properties of a new quasi-axisymmetric configuation. Nucl. Fusion 59, 026014, 11 pp.
Ho, D. D-M. & Kulsrud, R. M. 1987 Neoclassical transport in stellarators. Phys. Fluids 30, 442461.
Landreman, M. & Catto, P. J. 2011 Effects of the radial electric field in a quasisymmetric stellarator. Plasma Phys. Control. Fusion 53, 015004, 28pp.
Landreman, M. & Sengupta, W. 2018 Direct construction of optimized stellarator shapes. Part 1. Theory in cylindrical coordinates. J. Plasma Phys. 84, 905840616, 22pp.
Landreman, M., Sengupta, W. & Plunk, G. 2019 Direct construction of optimized stellarator shapes. Part 2. Numerical quasisymmetric solutions. J. Plasma Phys. 85, 905850103, 22pp.
Mynick, H. E. 1983 Effect of collisionless detrapping on nonaxisymmetric transport in a stellarator with radial electric field. Phys. Fluids 26, 26092615.
Nührenberg, J. & Zille, R. 1988 Quasi-helically symmetric toroidal stellarators. Phys. Lett. A 129, 113117.
Pytte, A. & Boozer, A. H. 1981 Neoclassical transport in helically symmetric plasmas. Phys. Fluids 24, 8892.
Shaing, K. C. 2015 Superbanana and superbanana plateau transport in finite aspect ratio tokamaks with broken symmetry. J. Plasma Phys. 81, 905810203, 12pp.
Su, C. H. & Oberman, C. 1968 Collisional damping of a plasma echo. Phys. Rev. Lett. 20, 427429.
White, R. B. 2001 The Theory of Toroidally Confined Plasmas, 2nd edn, pp. 298302. Imperial College Press.
MathJax is a JavaScript display engine for mathematics. For more information see


Collisional alpha transport in a weakly non-quasisymmetric stellarator magnetic field

  • Peter J. Catto (a1)
  • Please note a correction has been issued for this article.


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed

A correction has been issued for this article: