Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-17T14:34:39.591Z Has data issue: false hasContentIssue false

Clearing the road for high-fidelity fast ion simulations in full three dimensions

Published online by Cambridge University Press:  18 December 2018

T. Kurki-Suonio*
Affiliation:
Department of Applied Physics, Aalto University, FI-00076 AALTO, Finland
K. Särkimäki
Affiliation:
Department of Applied Physics, Aalto University, FI-00076 AALTO, Finland
J. Varje
Affiliation:
Department of Applied Physics, Aalto University, FI-00076 AALTO, Finland
S. Äkäslompolo
Affiliation:
Max-Planck-Institut für Plasmaphysik, Teilinstitut Greifswald, D-17491, Germany
J. Kontula
Affiliation:
Department of Applied Physics, Aalto University, FI-00076 AALTO, Finland
P. Ollus
Affiliation:
Department of Applied Physics, Aalto University, FI-00076 AALTO, Finland
M. Bécoulet
Affiliation:
CEA, IRFM, F-13108 Saint-Paul-lez-Durance, France
L. Chôné
Affiliation:
Department of Applied Physics, Aalto University, FI-00076 AALTO, Finland
Y. Liu
Affiliation:
General Atomics, San Diego, CA 92121, USA
P. Vincenzi
Affiliation:
Consorzio RFX, I-35127 Padova, Italy
*
Email address for correspondence: taina.kurki-suonio@aalto.fi

Abstract

High-energy ions, such as fusion alphas and ions from external heating, can be very sensitive to any non-axisymmetric features in the confining magnetic field due to their collisionless nature. Since understanding the confinement properties of these ions is crucial for ITER (the first fusion reactor currently under construction in Cadarache, France) and beyond, it is of ultimate importance that the predictive simulations are accurate and free of numerical distortions. Adding the third dimension comes at substantial computational cost, calling for new kinds of approaches and computational platforms. In this contribution we discuss what new features, even new physics, the non-axisymmetry brings with it and how one could cope with the ever-increasing demands on both memory and CPU resources. In the end, a few simulation examples with a varying level of non-axisymmetry are given.

Keywords

Type
Research Article
Copyright
© Cambridge University Press 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Äkäslompolo, S., Asunta, O., Bergmans, T., Gagliardi, M., Galabert, J., Hirvijoki, E., Kurki-Suonio, T., Sipilä, S., Snicker, A. & Särkimäki, K. 2015a Calculating the 3D magnetic field of ITER for European TBM studies. Fusion Engng Des. 98–99, 10391043; Proceedings of the 28th Symposium on Fusion Technology (SOFT-28), arXiv:1506.00659.Google Scholar
Äkäslompolo, S., Drevlak, M., Turkin, Y., Bozhenkov, S., Jesche, T., Kontula, J., Kurki-Suonio, T. & Wolf, R. 2018 Modelling of NBI ion wall loads in the w7-x stellarator. Nucl. Fusion 58 (8), 082010.Google Scholar
Äkäslompolo, S., Koskela, T. & Kurki-Suonio, T.2015b Biot savart law integrator biosaw. Arxiv.org, arXiv:151101629.Google Scholar
Akers, R., Verwichte, E., Martin, T., Pinches, S. & Lake, R. 2012 GPGPU Monte Carlo calculation of Gyro-Phase resolved fast ion and n-state resolved neutral deuterium distributions. In Proceedings of the 39th EPS Conference on Plasma Physics, Europhysics Conference Abstracts, vol. 36F, P5.058. European Physical Society.Google Scholar
Asunta, O., Govenius, J., Budny, R., Gorelenkova, M., Tardini, G., Kurki-Suonio, T., Salmi, A. & Sipilä, S. 2015 Modelling neutral beams in fusion devices: beamlet-based model for fast particle simulations. Comput. Phys. Commun. 188, 3346.Google Scholar
Brizard, A. J. 2004 A guiding-center fokker–planck collision operator for nonuniform magnetic fields. Phys. Plasmas 11 (9), 44294438.Google Scholar
Cary, J. R. & Brizard, A. J. 2009 Hamiltonian theory of guiding-center motion. Rev. Mod. Phys. 81, 693738.Google Scholar
Dewar, R. L. & Hudson, S. R. 1998 Stellarator symmetry. Physica D 112 (1–2), 275280; Proceedings of the Workshop on Time-Reversal Symmetry in Dynamical Systems.Google Scholar
Drevlak, M., Geiger, J., Helander, P. & Turkin, Y. 2014 Fast particle confinement with optimized coil currents in the W7-X stellarator. Nucl. Fusion 54 (7), 073002.Google Scholar
Hirvijoki, E., Brizard, A., Snicker, A. & Kurki-Suonio, T. 2013 Monte Carlo implementation of a guiding-center fokker-planck kinetic equation. Phys. Plasmas 20 (9), 092505.Google Scholar
Johnson, T., Salmi, A., Steinbrecher, G., Eriksson, L.-G., Hellsten, T., Höök, L., Schneider, M. & Contributors, I.-T. 2011 Library for rf interactions in orbit following codes. In AIP Conference Proceedings, vol. 1406, pp. 373376. AIP.Google Scholar
Kontula, J.2017 Neutral beam injection simulations in the wendelstein 7-x stellarator. Master’s thesis, Aalto University, School of Science.Google Scholar
Kraus, M.2013 Variational integrators in plasma physics. PhD thesis, Technical University of Munich.Google Scholar
Kurki-Suonio, T., Äkäslompolo, S., Särkimäki, K., Varje, J., Asunta, O., Cavinato, M., Gagliardi, M., Hirvijoki, E., Parail, V., Saibene, G. et al. 2016a Effect of the european design of tbms on iter wall loads due to fast ions in the baseline (15 ma), hybrid (12.5 ma), steady-state (9 ma) and half-field (7.5 ma) scenarios. Nucl. Fusion 56 (11), 112024.Google Scholar
Kurki-Suonio, T., Särkimäki, K., Äkäslompolo, S., Varje, J., Liu, Y., Sipilä, S., Asunta, O., Hirvijoki, E., Snicker, A., Terävä, J. et al. 2016b Protecting iter walls: fast ion power loads in 3d magnetic field. Plasma Phys. Control. Fusion 59 (1), 014013.Google Scholar
Lanthaler, S., Pfefferlé, D., Graves, J. & Cooper, W. 2017 Higher order larmor radius corrections to guiding-centre equations and application to fast ion equilibrium distributions. Plasma Phys. Control. Fusion 59 (4), 044014.Google Scholar
Liu, Y., Bondeson, A., Fransson, C.-M., Lennartson, B. & Breitholtz, C. 2000 Feedback stabilization of nonaxisymmetric resistive wall modes in tokamaks. I. Electromagnetic model. Phys. Plasmas 7 (9), 36813690.Google Scholar
Miettunen, J., Kurki-Suonio, T., Makkonen, T., Groth, M., Hakola, A., Hirvijoki, E., Krieger, K., Likonen, J., Äkäslompolo, S. & the ASDEX Upgrade Team 2012 The effect of non-axisymmetric wall geometry on $^{13}$ C transport in ASDEX Upgrade. Nucl. Fusion 52 (3), 032001.Google Scholar
Orain, F., Bécoulet, M., Dif-Pradalier, G., Huijsmans, G., Pamela, S., Nardon, E., Passeron, C., Latu, G., Grandgirard, V., Fil, A. et al. 2013 Non-linear magnetohydrodynamic modeling of plasma response to resonant magnetic perturbations. Phys. Plasmas 20 (10), 102510.Google Scholar
Pfefferlé, D., Cooper, W., Graves, J. & Misev, C. 2014 Venus-levis and its spline-fourier interpolation of 3d toroidal magnetic field representation for guiding-centre and full-orbit simulations of charged energetic particles. Comput. Phys. Commun. 185 (12), 31273140.Google Scholar
Särkimäki, K. J. V., Bécoulet, M., Liu, Y. & Kurki-Suonio, T. 2018 Mechanics of elm control coil induced alpha particle transport. Nucl. Fusion 58, 076021.Google Scholar
Schneider, R., Bonnin, X., Borrass, K., Coster, D., Kastelewicz, H., Reiter, D., Rozhansky, V. & Braams, B. 2006 Plasma edge physics with b2-eirene. Contrib. Plasma Phys. 46 (1–2), 3191.Google Scholar
Shinohara, K., Kawashima, H., Tsuzuki, K., Urata, K., Sato, M., Ogawa, H., Kamiya, K., Sasao, H., Kimura, H., Kasai, S. et al. 2003 Effects of complex magnetic ripple on fast ions in jft-2m ferritic insert experiments. Nucl. Fusion. 43 (7), 586.Google Scholar
Sirén, P., Varje, J., Äkäslompolo, S., Asunta, O., Giroud, C., Kurki-Suonio, T., Weisen, H. & JET contributors 2018 Versatile fusion source integrator afsi for fast ion and neutron studies in fusion devices. Nucl. Fusion 58 (1), 016023.Google Scholar
Sonato, P., Agostinetti, P., Bolzonella, T., Cismondi, F., Fantz, U., Fassina, A., Franke, T., Furno, I., Hopf, C., Jenkins, I. et al. 2017 Conceptual design of the demo neutral beam injectors: main developments and R&D achievements. Nucl. Fusion 57 (5), 056026.Google Scholar
Tani, K., Azumi, M., Kishimoto, H. & Tamura, S. 1981 Effect of toroidal field ripple on fast ion behavior in a tokamak. J. Phys. Soc. Japan 50 (5), 17261737.Google Scholar
Varje, J., Agostinetti, P., Kurki-Suonio, T., Snicker, A., Sonato, P., Särkimäki, K. & Vincenzi, P. 2017 Effect of 3d magnetic perturbations on fast ion confinement in the European demo. In 44th EPS Conference on Plasma Physics, Europhysics Conference Abstracts, vol. 41F, P2.147. European Physical Society.Google Scholar
Varje, J., Asunta, O., Cavinato, M., Gagliardi, M., Hirvijoki, E., Koskela, T., Kurki-Suonio, T., Liu, Y., Parail, V., Saibene, G. et al. 2016 Effect of plasma response on the fast ion losses due to ELM control coils in ITER. Nucl. Fusion 56 (4), 046014.Google Scholar
Vincenzi, P. et al. 2017 EU DEMO transient phases: main constraints and heating mix studies for ramp-up and ramp-down. Fus. Engng. Design 123, 473476.Google Scholar
Wenninger, R., Albanese, R., Ambrosino, R., Arbeiter, F., Aubert, J., Bachmann, C., Barbato, L., Barrett, T., Beckers, M., Biel, W. et al. 2017 The demo wall load challenge. Nucl. Fusion 57 (4), 046002.Google Scholar