Skip to main content Accessibility help
×
Home

Classical free-electron lasing in an undulating electrostatic field in the axial direction

  • S. H. Kim (a1)

Abstract

It is shown that the phase of the electromagnetic wave emitted through stimulated emission is intrinsically random. The insensitivity of the phase of the laser field to any disturbance in the laser cavity parameter derives from the fact that stimulated and spontaneous emissions take place concurrently at the same wave vector, the phases of spontaneous emission are mildly bunched, and the central limit theorem can be applied to the phase of the laser field. The two spectral lines observed in the Smith-Purcell free-electron laser experiment show that both classical and quantum-mechanical free-electron lasings, in which the wigglers behave as classical waves and wiggler quanta respectively, take place concurrently at different laser wavelengths in the case of the electric wiggler. It is shown that the coherence of the classical free-electron laser is achieved through modulation of the relativistic electron mass by the electric wiggler. The classical free-electron lasing is calculated using the quantum-augmented classical theory. In this, the probability of stimulated emission is first evaluated by interpreting the classically derived energy exchange between an electron and the laser field from a quantum-mechanical viewpoint. Then the laser gain is obtained from this probability by using a relationship between the two quantities derived by quantum kinetics. The wavelength of the fundamental line of classical free-electron lasing is twice the wavelength of the fundamental line of the free-electron two-quantum Stark emission, which is the quantum free-electron lasing in the electric wiggler. The gain of the classical free-electron lasing appears to scale as λ3w3, where γ is the Lorentz factor of the electron beam and λw is the wavelength of the wiggler.

Copyright

References

Hide All
Autler, S. H. & Townes, C. H. 1955 Phys. Rev. 100, 703.
Baranger, M. & Mozer, B. 1961 Phys. Rev. 123, 25.
Bekefi, G. 1980 J. Appl. Phys. 51, 3081.
Bonifacio, R. & Lugiato, L. A. 1975 Phys. Rev. A 11, 1507.
Brau, C. 1990 Free-Electron Lasers. Academic.
Burrel, C. F. & Kunze, H.-J. 1972 Phys. Rev. Lett. 29, 1445.
Chen, F. F. 1974 Introduction to Plasma Physics, p. 219. Plenum.
Dicke, R. H. 1954 Phys. Rev. 93, 99.
DuBois, D. F. & Goldman, M. V. 1966 Phys. Rev. 14, 544.
Elias, L. R., Fairbank, M., Madey, J. M. J., Schwettmann, H. A. & Smith, T. I. 1976 Phys. Rev. Lett. 36, 717.
Feller, W. 1971 An Introduction to Probability Theory and its Applications. Wiley.
Fujiyama, H. & Nambu, M. 1984 Phys. Lett. 105 A, 295.
Gover, A. 1980 Appl. Phys. 23, 295.
Grauber, R. J. & Haake, F. 1976 Phys. Rev. A 13, 357.
Gross, M., Fabre, C., Pillet, P. & Haroche, S. 1976 Phys. Rev. Lett. 36, 1035.
Kim, S. H. 1977 J. Appl. Phys. 48, 3651.
Kim, S. H. 1978 a J. Korean Phys. Soc. 11, 34.
Kim, S. H. 1978 b J. Appl. Phys. 49, 3066.
Kim, S. H. 1984 Phys. Fluids 27, 675.
Kim, S. H. 1986 J. Plasma Phys. 36, 195 [Corrigendum 41, 577 (1989)].
Kim, S. H. 1989 a Phys. Lett. 135 A, 39.
Kim, S. H. 1989 b Phys. Lett. 135 A, 44.
Kim, S. H. 1990 Free-Electron Lasers and Applications (ed. Prosnitz, D.), SPIE Proc. 1227, p. 66. SPIE-The International Society for Optical Engineering.
Kim, S. H. 1991 a Nuovo Cim. B 106, 325.
Kim, S. H. 1991 b Intense Microwave and Particle Beams II (ed. Brandt, H. E.), SPIE vol. 1407, p. 620. SPIE-The International Society for Optical Engineering.
Kim, S. H. 1991 c NUOVO Cim. B (in press).
Kim, S. H. 1992 J. Phys. Soc. Japan 61, 131.
Kim, S. H., Chen, K. W. & Yang, J. S. 1990 J. Appl. Phys. 68, 4942.
Kim, S. H. & Chung, H. Y. 1978 J. Appl. Phys. 49, 49.
Kim, S. H. & Wilhelm, H. E. 1973 J. Appl. Phys. 44, 802.
Madey, J. M. J. 1971 J. Appl. Phys. 42, 1906.
Nambu, M. 1976 Phys. Fluids 19, 412.
Nambu, M. 1983 Laser and Particle Beams 1, 427.
Nambu, M., Sarma, S. N. & Bujarbarua, S. S. 1990 Phys. Fluids B 2, 302.
Nishikawa, K. 1968 J. Phys. Soc. Japan 24, 916.
Orzechowski, T. J., Anderson, B. R., Clark, J. C., Fawley, W. M., Paul, A. C., Prosnitz, D., Scharlemann, E. T., Yarema, S. M., Hopkins, D. B., Sessler, A. M. & Wurtele, J. S. 1986 Phys. Rev. Lett. 57, 2172.
Sarma, S. N., Sarma, K. K. & Nambu, M. 1991 J. Plasma Phys. 46, 331.
Smith, S. J. & Purcell, E. M. 1953 Phys. Rev. 92, 1069.
Silin, V. P. 1965 Soviet Phys. JETP 21, 1127.
Verdeyen, J. T. 1981 Laser Electronics, p. 12. Prentice-Hall.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Related content

Powered by UNSILO

Classical free-electron lasing in an undulating electrostatic field in the axial direction

  • S. H. Kim (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.