Skip to main content Accessibility help
×
Home

Characterization of laser-driven proton beams from near-critical density targets using copper activation

  • L. Willingale (a1), S. R. Nagel (a2), A. G. R. Thomas (a1), C. Bellei (a2), R. J. Clarke (a3), A. E. Dangor (a4), R. Heathcote (a3), M. C. Kaluza (a5) (a6), C. Kamperidis (a4), S. Kneip (a4), K. Krushelnick (a1), N. Lopes (a4) (a7), S. P. D. Mangles (a4), W. Nazarov (a8), P. M. Nilson (a9) and Z. Najmudin (a4)...

Abstract

Copper activation was used to characterize high-energy proton beam acceleration from near-critical density plasma targets. An enhancement was observed when decreasing the target density, which is indicative for an increased laser-accelerated hot electron density at the rear target-vacuum boundary. This is due to channel formation and collimation of the hot electrons inside the target. Particle-in-cell simulations support the experimental observations and show the correlation between channel depth and longitudinal electric field strength is directly correlated with the proton acceleration.

Copyright

Corresponding author

Email address for correspondence: wlouise@umich.edu

Footnotes

Hide All

Previous address: Blackett Laboratory, Imperial College London SW7 2AZ, United Kingdom

Footnotes

References

Hide All
Albright, B. J., Yin, L., Bowers, K. J., Hegelich, B. M., Flippo, K. A., Kwan, T. J. T. and Fernández, J. C. 2007 Relativistic Buneman instability in the laser breakout afterburner. Phys. Plas. 14, 094502.
Clark, E. L. 2001 Measurements of energetic particles from ultra intense laser plasma interactions. PhD thesis, University of London.
Clark, E. L. et al. 2000 Energetic heavy-ion and proton generation from ultraintense laser-plasma interactions with solids. Phys. Rev. Lett. 85, 1654.
Clarke, R. J. et al. 2008 Nuclear activation as a high dynamic range diagnostic of laser-plasma interactions. Nucl. Instrum. Methods Phys. Res. 585, 117120.
Falconer, J. W., Nazarov, W. and Horsfield, C. J. 1995 In-situ production of very-low-density microporous polymeric foams. J. Vac. Sci. Tech. A 13, 1941.
Fiuza, F. et al. 2012 Laser-driven shock acceleration of monoenergetic ion beams. Phys. Rev. Lett. 109, 215 001.
Fiuza, F., Stockem, A., Boella, E., Fonseca, R. A., Silva, L. O., Haberberger, D., Tochitsky, S., Mori, W. B. and Joshi, C. 2013 Ion acceleration from laser-driven electrostatic shocks. Phys. Plas. 20, 056 304.
Fonseca, R. A. et al. 2002 Osiris: a three-dimensional, fully relativistic particle in cell code for modeling plasma based accelerators. In: Computational Science-ICCS 2002, PT III, Proceedings: Lecture Notes in Computer Science, Vol. 2331 (ed. Sloot, P., Tan, C. J. K., Dongarra, J. J. and Hoekstra, A. G.) Springer-Verlag Berlin, Germany, pp. 342351.
Haberberger, D., Tochitsky, S., Fiuza, F., Gong, C., Fonseca, R. A., Silva, L. O., Mori, W. B. and Joshi, C. 2012 Collisionless shocks in laser-produced plasma generate monoenergetic high-energy proton beams. Nature Phys. 8, 95.
Hatchett, S. P. et al. 2000 Electron, photon, and ion beams from the relativistic interaction of petawatt laser pulses with solid targets. Phys. Plasma 7, 2076.
Henig, A. et al. 2009 Enhanced laser-driven ion acceleration in the relativistic transparency regime. Phys. Rev. Lett. 103, 045 002.
Mora, P. 2003 Plasma expansion into a vacuum. Phys. Rev. Lett. 90, 185 002.
Najmudin, Z., Krushelnick, K., Tatarakis, M., Clark, E. L., Danson, C. N., Malka, V., Neely, D., Santala, M. I. K. and Dangor, A. E. 2003 The effect of high intensity laser propagation instabilities on channel formation in underdense plasmas. Phys. Plasma 10, 438.
Naumova, N. M., Koga, J., Nakajima, K., Tajima, T., Esirkepov, T. Zg, Bulanov, S. V. and Pegoraro, F. 2001 Polarization, hosing and long time evolution of relativistic laser pulses. Phys. Plasma 8, 4149.
Nilson, P. M. et al. 2010 Plasma cavitation in ultraintense laser interactions with underdense helium plasmas. New J. Phys. 12, 045 014.
Palmer, C. A. J. et al. 2011 Monoenergetic proton beams accelerated by a radiation pressure driven shock. Phys. Rev. Lett. 106, 014 801.
Pukhov, A. and Meyer ter Vehn, J. 1998 Relativistic laser-plasma interaction by multi-dimensional particle-in-cell simulations. Phys. Plasma 5, 1880.
Ridgers, C. P., Brady, C. S., Duclous, R., Kirk, J. G., Bennett, K., Arber, T. D. and Bell, A. R. 2013 Dense electron-positron plasmas and bursts of gamma-rays from laser-generated quantum electrodynamic plasmas. Phys. Plasma 20, 056 701.
Ridgers, C. P., Brady, C. S., Duclous, R., Kirk, J. G., Bennett, K., Arber, T. D., Robinson, A. P. L. and Bell, A. R. 2012 Dense electron-positron plasmas and ultraintense γ rays from laser-irradiated solids. Phys. Rev. Lett. 108, 165 006.
Silva, L. O., Marti, M., Davies, J. R., Fonseca, R. A., Ren, C., Tsung, F. S. and Mori, W. B. 2004 Proton shock acceleration in laser-plasma interactions. Phys. Rev. Lett. 92, 015 002.
Wei, M. S. et al. 2006 Reduction of proton acceleration in high-intensity laser interaction with solid two-layer targets. Phys. Plas. 13, 123 101.
Wilks, S. C., Kruer, W. L., Tabak, M. and Langdon, A. B. 1992 Absorption of ultra-intense laser pulses. Phys. Rev. Lett. 69, 1383.
Wilks, S. C. et al. 2001 Energetic proton generation in ultra-intense lasersolid interactions. Phys. Plasma 8, 542.
Willingale, L. et al. 2009 Characterization of high-intensity laser propagation in the relativistic transparent regime through measurements of energetic proton beams. Phys. Rev. Lett. 102, 125 002.
Willingale, L., Nilson, P. M., Thomas, A. G. R., Bulanov, S. S., Maksimchuk, A., Nazarov, W., Sangster, T. C., Stoeckl, C. and Krushelnick, K. 2011 High-power, kilojoule laser interactions with near-critical density plasma. Phys. Plasma 18, 056 706.
Zepf, M. et al. 2001 Fast particle generation and energy transport in laser-solid interactions. Phys. Plasma 8, 2323.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed