Skip to main content Accessibility help
×
Home

Applications of the wave kinetic approach: from laser wakefields to drift wave turbulence

  • R. M. G. M. TRINES (a1), R. BINGHAM (a1), L. O. SILVA (a2), J. T. MENDONÇA (a2), P. K. SHUKLA (a3), C. D. MURPHY (a1), M. W. DUNLOP (a1), J. A. DAVIES (a1), R. BAMFORD (a1), A. VAIVADS (a4) and P. A. NORREYS (a1)...

Abstract

Nonlinear wave-driven processes in plasmas are normally described by either a monochromatic pump wave that couples to other monochromatic waves, or as a random phase wave coupling to other random phase waves. An alternative approach involves a random or broadband pump coupling to monochromatic and/or coherent structures in the plasma. This approach can be implemented through the wave-kinetic model. In this model, the incoming pump wave is described by either a bunch (for coherent waves) or a sea (for random phase waves) of quasi-particles. This approach has been applied to both photon acceleration in laser wakefields and drift wave turbulence in magnetized plasma edge configurations. Numerical simulations have been compared to experiments, varying from photon acceleration to drift mode-zonal flow turbulence, and good qualitative correspondences have been found in all cases.

Copyright

References

Hide All
[1]Sagdeev, R. Z. and Galeev, A. A. 1969 Nonlinear Plasma Theory, New York: Benjamin.
[2]Besieris, I. M. and Tappert, F. D. 1973 J. Math. Phys. 14, 704.
[3]Wigner, E. 1932 Phys. Rev. 40, 749.
[4]Moyal, J. E. 1949 Proc. Camb. Phil. Soc. 45, 99.
[5]Peierls, R. E. 1995 Quqntum Theory of Solids. Oxford: Oxford University Press.
[6]McDonald, S. W. 1988 Phys. Rep. 158, 337.
[7]Kadomtsev, B. B. 1965 Plasma Turbulence, London: Academic Press.
[8]Bingham, R., Mendonça, J. T. and Dawson, J. M. 1997 Phys. Rev. Lett. 78, 247.
[9]Silva, L. O., Mori, W. B., Bingham, R., Dawson, J. M., Antonsen, T. M. Jr. and Mora, P. 2000 IEEE Trans. Plas. Sci. 28, 1202.
[10]Tappert, F. D., Cole, W. J., Hardin, R. H. and Zabusky, N. J. 1971 In: Proceedings of the Fourth Conference on Numerical Simulation of Plasmas, 1970, Washington, D.C. (ed. Boris, J. and Shanny, R.). Arlington, VA: Office of Naval Research, p. 196.
[11]Dawson, J. M. 1983 Rev. Mod. Phys. 55, 403447.
[12]Birdsall, C. K. and Langdon, A. B. 1991 Plasma Physics via Computer Simulation. Bristol and Philadelphia: Institute of Physics Publishing.
[13]Bingham, R., Bethe, H. A., Dawson, J. M., Shukla, P. K., and Su, J. J. 1996 Phys. Lett. A 220, 107.
[14]Silva, L. O. and Mendonça, J. T. 1998 Phys. Rev. E 57, 3423.
[15]Mendonça, J. T., Bingham, R. and Shukla, P. K. 2003 Phys. Rev. E 68, 0164406.
[16]Whitham, G. B. 1974 Linear and Nonlinear Waves, New York: John Wiley & Sons.
[17]Mattor, N. and Diamond, P. H. 1994 Phys. Plasmas 1, 4002.
[18]Mendonça, J. T. 2001 Theory of Photon Acceleration, Series in Plasma Physics. Bristol and Philadelphia: Institute of Physics Publishing.
[19]Silva, L. O., Bingham, R., Dawson, J. M. and Mori, W. B. 1999 Phys. Rev. E 59, 2273.
[20]Hasegawa, A. and Mima, K. 1978 Phys. Fluids 21, 87.
[21]Hasegawa, A. and Wakatani, M. 1983 Phys. Rev. Lett. 50, 682.
[22]Horton, W. and Hasegawa, A. 1994 Chaos 4, 227.
[23]Smolyakov, A. I., Diamond, P. H. and Shevchenko, V. I. 2000 Phys. Plasmas 7, 1349.
[24]Trines, R., Bingham, R., Dunlop, M. W., Vaivads, A., Davies, J. A., Mendonça, J. T., Silva, L. O. and Shukla, P. K. 2007 Phys. Rev. Lett. 99, 205006.
[25]Kirk, A. et al. (MAST Team) 2004 Phys. Rev. Lett. 92, 245002; Kirk, A. et al. and the MAST team 2005 Plasma Phys. Control. Fusion 47, 315.
[26]Smolyakov, A. I. and Diamond, P. H. 1999 Phys. Plasmas 6, 4410.
[27]Trines, R., Bingham, R., Silva, L. O., Mendonça, J. T., Shukla, P. K. and Mori, W. B. 2005 Phys. Rev. Lett. 94, 165002.
[28]Murphy, C. D. et al. 2006 Phys. Plasmas 13, 033108.
[29]Wilks, S. C., Dawson, J. M., Mori, W. B., Katsouleas, T. and Jones, M. E. 1989 Phys. Rev. Lett. 62, 2600.
[30]Savage, R. L., Joshi, C. and Mori, W. B. 1992 Phys. Rev. Lett. 68, 946.
[31]Wood, W. M., Siders, C. W. and Downer, M. C. 1991 Phys. Rev. Lett. 67, 3523.
[32]Silva, L. O. and Mendonça, J. T. 2001 Opt. Commun. 196, 285.
[33]Dias, J. M. et al. Phys. Rev. Lett. 78, 4773.
[34]Lopes, N. C., Figueira, G., Dias, J. M., Silva, L. O., Mendonça, J. T., Balcou, Ph., Rey, G. and Stenz, C. 2004 Europhys. Lett. 66, 371.
[35]Koga, J. K., Naumova, N., Kando, M., Tsintsadze, L. N., Nakajima, K., Bulanov, S. V., Dewa, H., Kotaki, H. and Tajima, T. 2000 Phys. Plasmas 7, 5223.
[36]Trines, R. M. G. M. et al. 2009 Plasma Phys. Contr. Fusion 51, 024008.
[37]Fonseca, R. A. et al. 2002 In: Lecture Notes in Computer Science, Vol. 2331, p. 342.
[38]Vaivads, A., André, M., Buchert, S. C., Wahlund, J.-E., Fazakerley, A. N. and Cornilleau-Wehrlin, N. 2004 Geophys. Res. Lett. 31, L03804.
[39]Tynan, G. R. et al. 1997 J. Vac. Sci. Tech. A 15, 2885.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Applications of the wave kinetic approach: from laser wakefields to drift wave turbulence

  • R. M. G. M. TRINES (a1), R. BINGHAM (a1), L. O. SILVA (a2), J. T. MENDONÇA (a2), P. K. SHUKLA (a3), C. D. MURPHY (a1), M. W. DUNLOP (a1), J. A. DAVIES (a1), R. BAMFORD (a1), A. VAIVADS (a4) and P. A. NORREYS (a1)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed