Skip to main content Accessibility help
×
Home

Application of Thomson scattering to helicon plasma sources

  • R. Agnello (a1), Y. Andrebe (a1), H. Arnichand (a1), P. Blanchard (a1), T. De Kerchove (a1), I. Furno (a1), A. A. Howling (a1), R. Jacquier (a1) and A. Sublet (a2)...

Abstract

The possibility of performing electron density and temperature measurements in a high power helicon plasma is a crucial issue in the framework of the AWAKE (Advanced WAKefield Experiment) project, which demonstrates acceleration of particles using $\text{GeV}~\text{m}^{-1}$ electric fields in plasmas. For AWAKE, a helicon is currently envisaged as a candidate plasma source due to its capability for low electron and ion temperature, high electron density and production of an elongated plasma column. A plasma diagnostic to accurately determine the electron density in AWAKE regimes would be a valuable supporting tool. A demonstration Thomson scattering (TS) diagnostic was installed and successfully tested on the resonant antenna ion device (RAID) at the Swiss Plasma Center of Ecole Polytechnique Fédérale de Lausanne. RAID produces a helicon plasma column with characteristics similar to those of the AWAKE helicon source, and is therefore an optimal testbed for application to the AWAKE device. The spectrometer employed in RAID is based on polychromators which collect the light scattered by plasma electrons in spectrally filtered wavelength regions. Results from TS on RAID demonstrate conditions of electron density and temperature respectively of $n_{e}=1.10\,(\pm 0.19)\times 10^{19}~\text{m}^{-3}$ and $T_{e}=2.3\,(\pm 0.6)~\text{eV}$ in a steady-state discharge in an Ar plasma with 5 kW of RF power. If the same polychromator system is used for AWAKE, where the electron density attained is $2\times 10^{20}~\text{m}^{-3}$ , the contribution to measurement error due to coherent scattering is ${\sim}2.5\,\%$ . Presented here are details of the TS diagnostic and the first tests in RAID, and the expectations for the system when employed on the AWAKE device.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Application of Thomson scattering to helicon plasma sources
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Application of Thomson scattering to helicon plasma sources
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Application of Thomson scattering to helicon plasma sources
      Available formats
      ×

Copyright

Corresponding author

Email address for correspondence: riccardo.agnello@epfl.ch

References

Hide All
Adli, E., Ahuja, A., Apsimon, O. et al. 2018 Acceleration of electrons in the plasma wakefield of a proton bunch. Nature 561, 363367.
Agnello, R., Barbisan, M., Furno, I., Guittienne, P., Howling, A. A., Jacquier, R., Pasqualotto, R., Plyushchev, G., Andrebe, Y., Béchu, S. et al. 2018 Cavity ring-down spectroscopy to measure negative ion density in a helicon plasma source for fusion neutral beams. Rev. Sci. Instrum. 89, 103504.
Arnichand, H., Andrebe, Y., Blanchard, P., Antonioni, S., Couturier, S., Decker, J., Duval, B., Felici, F., Galperti, C., Isoz, P.-F. et al. 2019 New capabilities of the incoherent Thomson scattering diagnostics in the TCV tokamak: divertor and real-time measurements. J. Instrum. 14 (09), C09013.
AWAKE collaboration2013 Awake design report. Tech. Rep. SPSC-2013-013. CERN.
Biewer, T., Meitner, S. J., Rapp, J., Ray, H. & Shaw, G. 2016 First results from the Thomson scattering diagnostic on the proto-MPEX. Rev. Sci. Instrum. 87, 11E518.
Biewer, T. M. & Shaw, G. 2014 Initial implementation of a Thomson scattering diagnostic for Proto-MPEX. Rev. Sci. Instrum. 85, 11D812.
Bozhenkov, S. A., Beurskensa, M., Dal Molinb, A., Fucherta, G., Pascha, E., Stoneking, M., Hirscha, M., Hofela, U., Knauera, J. & Svenssona, J. 2017 The Thomson scattering diagnostic at the Wendelstein 7-X and its performances in the first operation phase. J. Instrum. 87, P10004.
Buttenschon, B., Fahrenkamp, N. & Grulke, O. 2018 A high power, high density helicon discharge for the plasma wakefield accelerator experiment AWAKE. Plasma Phys. Control. Fusion 60, 075005.
Carlstrom, T. N., Hsieh, C. L., Stockdale, R., Nilson, D. G. & Hill, D. N. 1997 Initial operation of the divertor Thomson scattering diagnostic on DIII-D. Rev. Sci. Instrum. 68, 1195.
Franke, S.1997 Application of Thomson scattering at $1.06~\unicode[STIX]{x03BC}\text{m}$ as a diagnostic for spatial profile measurements of electron temperature and density on the TCV tokamak. PhD thesis, Ecole Polytechnique Fédérale de Lausanne.
Furno, I., Agnello, R., Fantz, U., Howling, A., Jacquier, R., Marini, C., Plyushchev, G., Guittienne, P. & Simonin, A. 2017 Helicon wave-generated plasmas for negative ion beams for fusion. EPJ Web of Conferences 157, 03014.
Goulding, R. H., Caughman, J. B. O., Rapp, J., Biewer, T. M., Bigelow, T. S., Campbell, I. H., Caneses, J. F., Donovan, D., Kafle, N., Martin, E. H. et al. 2017 Progress in the development of a high power helicon plasma source for the materials plasma exposure experiment. Fusion Sci. Technol. 72, 588592.
Guittienne, P., Chevalier, E. & Hollenstein, C. 2005 Towards an optimal antenna for helicon waves excitation. J. Appl. Phys. 98, 083304.
Hawke, J., Andrebe, Y., Bertizzolo, R., Blanchard, P., Chavan, R., Decker, J., Duval, B., Lavanchy, P., Llobet, X., Marlétaz, B. et al. 2017 Improving spatial and spectral resolution of TCV Thomson scattering. J. Instrum. 12, C12005.
Huang, M. & Hieftje, G. M. 1989 A new procedure for determination of electron temperatures and electron concentrations by Thomson scattering from analytical plasmas. Spectrochim. Acta B 44B, 291305.
Jacquier, R., Agnello, R., Duteil, B. P., Guittienne, P., Howling, A., Plyushchev, G., Marini, C., Simonin, A., Morgal, I., Bechu, S. et al. 2019 First b-dot measurements in the raid device, an alternative negative ion source for demo neutral beams. Fusion Engng Des. 146, 11401144.
LeBlanc, B. P. 2008 Thomson scattering density calibration by Rayleigh and rotational raman scattering on nstx. Rev. Sci. Instrum. 79, 10E737.
Lee, K. Y., Lee, K. I., Kim, J. H. & Lho, T. 2018 High resolution Thomson scattering system for steady-state linear plasma sources. Rev. Sci. Intrum. 89, 013508.
Lieberman, M. A. & Lichtenberg, A. J. 2005 Principles of Plasma Discharges and Materials Processing. John Wiley and Sons.
Marini, C., Agnello, R., Duval, B. P., Furno, I., Howling, A. A., Jacquier, R., Karpushov, A. N., Plyushchev, G., Verhaegh, K. & Guittienne, P. 2017 Spectroscopic characterization of $H_{2}$ and $D_{2}$ helicon plasmas generated by a resonant antenna for neutral beam applications in fusion. Nucl. Fusion 57, 036024.
McLean, A. G., Soukhanovskii, V. A., Allen, S. L., Carlstrom, T. N., LeBlanc, B. P., Ono, M. & Stratton, B. C. 2014 Conceptual design of a divertor Thomson scattering diagnostic for NSTX-Ua. Rev. Sci. Intrum. 85, 11E825.
Meiden, v. d. H. J.2011 Thomson scattering on low and high temperature plasmas. PhD thesis, Technische Universiteit Eindhoven.
Pasqualotto, R., Nielsen, P., Gowers, C., Beuskens, M., Kempenaars, M., Carlstrom, T., Johnson, D. & Contributors, J.-E. 2004 High resolution Thomson scattering for Joint European Torus (JET). Rev. Sci. Instrum. 75, 3891.
Pitzschke, A.2011 Pedestal Characteristics and MHD Sability of H-mode in TCV. PhD thesis, Ecole Polytechnique Fédérale de Lausanne.
Plyushchev, G., Kersevan, R., Petrenko, A. & Muggli, P. 2018 A rubidium vapor source for plasma source for AWAKE. J. Phys. D: Appl. Phys. 51, 025205.
Rapp, J., Owen, L. W., Canik, J., Lore, J. D., Caneses, J. F., Kafle, N., Ray, H. & Showers, M. 2019 Radial transport modeling of high density deuterium plasmas in proto-MPEX with the B2.5-Eirene code. Phys. Plasmas 26, 042513.
Salpeter, E. E. 1960 Electron density fluctuations in plasma. Phys. Rev. 120, 15281535.
Scannell, R., Beurskens, M., Kempenaars, M., Naylor, G., Walsh, M., O’Gorman, T. & Pasqualotto, R. 2010 Absolute calibration of LINDAR Thomson scattering system by rotational Raman scattering. Rev. Sci. Intrum. 81, 045107.
Scime, E. E., Kesee, A. & Boswell, R. W. 2008 Mini-conference on helicon plasma sources. Phys. Plasmas 15, 058301.
Seo, B., You, S., Kim, J., b, D. S., Shin, Y. & Chang, H. 2013 Measurements of electron energy probability functions in helicon discharge by laser Thomson scattering. Thin Solid Films 547, 5256.
Tajima, T. & Dawson, J. M. 1979 Laser electron accelerator. Phys. Rev. Lett. 43, 267.
Thompson, D., Agnello, R., Furno, I., Howling, A., Jacquier, R., Plyushchev, G. & Scime, E. 2017 Ion heating and flows in a high power helicon source. Phys. Plasmas 24, 063517.
Vieira, J., Fonseca, R. A., Mori, W. B. & Silva, L. O. 2018 Ion motion in self-modulated plasma wakefield accelerators. Phys. Rev. Lett. 109, 145005.
Vincent, B., Tsikata, S., Mazouffre, S., Minea, T. & Fils, J. 2018 A compact new incoherent Thomson scattering diagnostic for low-temperature plasma studies. Plasma Sources Sci. Technol. 27, 055002.
Warner, K. & Hieftje, G. M. 2002 Thomson scattering from analytical plasmas. Spectrochim. Acta B 57, 201241.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Keywords

Application of Thomson scattering to helicon plasma sources

  • R. Agnello (a1), Y. Andrebe (a1), H. Arnichand (a1), P. Blanchard (a1), T. De Kerchove (a1), I. Furno (a1), A. A. Howling (a1), R. Jacquier (a1) and A. Sublet (a2)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.