Home
Hostname: page-component-78dcdb465f-fqvcn Total loading time: 0.643 Render date: 2021-04-19T20:06:49.200Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

# Stability of force-free magnetic fields versus magnetic pitch

Published online by Cambridge University Press:  19 June 2002

## Abstract

Starting from the one-dimensional energy integral and related stability theorems given by Newcomb [Ann. Phys (NY)10, 232 (1960)] for a linear pinch system, this paper analyses the stability of one-dimensional force-free magnetic fields in cylindrical coordinates (r, θ, z). It is found that the stability of the force-free field is closely related to the radial distribution of the pitch of the field lines: h(r) = 2πrBz/Bθ. The following three types of force-free fields are proved to be unstable: (i) force-free fields with a uniform pitch; (ii) force-free fields with a pitch that increases in magnitude with r in the neighbourhood of r = 0(d[mid ]h[mid ]/dr > 0); and (iii) force-free fields for which (dh/dr)r=0 = 0, Bθ α rm in the neighbourhood of r = 0, and (h d2h/dr2)r=0 > −128π2/(2m+4)2. On the other hand, the stability does not have a definite relation to the maximum of the force-free factor α defined by [dtri ]×B = αB. Examples will be given to illustrate that force-free fields with an infinite force-free factor at the boundary are stable, whereas those with a force-free factor that is finite and smaller than the lowest eigenvalue of linear force-free field solutions in the domain of interest are unstable. The latter disproves the sufficient criterion for stability of nonlinear force-free magnetic fields given by Krüger [J. Plasma Phys.15, 15 (1976)] that a nonlinear force-free field is stable if the maximum absolute value of the force-free factor is smaller than the lowest eigenvalue of linear force-free field solutions in the domain of interest.

Type
Research Article
2002 Cambridge University Press

## Access options

Get access to the full version of this content by using one of the access options below.

### Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 10 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 19th April 2021. This data will be updated every 24 hours.

# Send article to Kindle

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Stability of force-free magnetic fields versus magnetic pitch
Available formats
×

# Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Stability of force-free magnetic fields versus magnetic pitch
Available formats
×

# Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Stability of force-free magnetic fields versus magnetic pitch
Available formats
×
×