Skip to main content Accessibility help
×
Home
Hostname: page-component-78dcdb465f-cs4hf Total loading time: 3.397 Render date: 2021-04-18T17:19:44.431Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Self-modulated wakefield acceleration in a centimetre self-guiding channel

Published online by Cambridge University Press:  30 March 2012

C. KAMPERIDIS
Affiliation:
Imperial College, Blackett Laboratory, Prince Consort Road, London, SW7 2AZ, UK (ckamperidis@chania.teicrete.gr, z.najmudin@imperial.ac.uk) TEI of Crete, Centre for Plasma Physics and Lasers, Rethymno, 74100, Greece
C. BELLEI
Affiliation:
Imperial College, Blackett Laboratory, Prince Consort Road, London, SW7 2AZ, UK (ckamperidis@chania.teicrete.gr, z.najmudin@imperial.ac.uk)
N. BOURGEOIS
Affiliation:
LULI, Ecole Polytechnique–CNRS, Palaiseau, 91128, France
M. C. KALUZA
Affiliation:
Institute for Optics and Quantum Electronics, Max-Wien-Platz, Jena, 07743, Germany
K. KRUSHELNICK
Affiliation:
Imperial College, Blackett Laboratory, Prince Consort Road, London, SW7 2AZ, UK (ckamperidis@chania.teicrete.gr, z.najmudin@imperial.ac.uk)
S. P. D. MANGLES
Affiliation:
Imperial College, Blackett Laboratory, Prince Consort Road, London, SW7 2AZ, UK (ckamperidis@chania.teicrete.gr, z.najmudin@imperial.ac.uk)
J. R. MARQUES
Affiliation:
LULI, Ecole Polytechnique–CNRS, Palaiseau, 91128, France
S. R. NAGEL
Affiliation:
Imperial College, Blackett Laboratory, Prince Consort Road, London, SW7 2AZ, UK (ckamperidis@chania.teicrete.gr, z.najmudin@imperial.ac.uk)
Z. NAJMUDIN
Affiliation:
Imperial College, Blackett Laboratory, Prince Consort Road, London, SW7 2AZ, UK (ckamperidis@chania.teicrete.gr, z.najmudin@imperial.ac.uk)

Abstract

Self-modulated wakefield acceleration was investigated at densities down to ~4 × 1018 cm−3 by propagating the 50 TW 300 fs LULI laser in helium gas jets at lengths up to 1 cm. Long interaction lengths were achieved by closer matching of the initial focal spot size to the matched spot size for these densities. Electrons with energies extending to 180 MeV were observed in broad energy spectra which show some evidence for non-Maxwellian features at high energy. Two-dimensional PIC simulations indicate that the intial laser pulse breaks up into small pulselets that are eventually compressed and focused inside the first few plasma periods, leading to a ‘bubble-like’ acceleration of electron bunches.

Type
Papers
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below.

References

Chen, L. M., Kotaki, H., Nakajima, K., Koga, J., Bulanov, S. V., Tajima, T., Gu, Y. Q., Peng, H. S., Wang, X. X., et al. 2007 Self-guiding of 100 TW femtosecond laser pulses in centimeter-scale underdense plasma. Phys. Plasmas 14 (4), 040703.CrossRefGoogle Scholar
Chessa, P., Mora, P. and Antonsen, T. M. 1998 Numerical simulation of short laser pulse relativistic self-focusing in underdense plasma. Phys. Plasmas 5 (9), 34513458.CrossRefGoogle Scholar
Clayton, C. E., Ralph, J. E., Albert, F., Fonseca, R. A., Glenzer, S. H., Joshi, C., Lu, W., Marsh, K. A., Martins, S. F., et al. 2010 Self-guided laser wakefield acceleration beyond 1 GeV using ionization-induced injection. Phys. Rev. Lett. 105 (10), 105003.CrossRefGoogle ScholarPubMed
Esarey, E., Sprangle, P., Krall, J. and Ting, A. 1996 Self-guided laser wakefield acceleration beyond 1 GeV using ionization-induced injection. IEEE Trans. Plasma Sci. 24 (2), 252288.CrossRefGoogle Scholar
Faure, J., Glinec, Y., Pukhov, A., Kiselev, S., Gordienko, S., Lefebvre, E., Rousseau, J. P., Burgy, F. and Malka, V. 2004 A laser-plasma accelerator producing monoenergetic electron beams. Nature 431 (7008), 541544.CrossRefGoogle ScholarPubMed
Faure, J., Glinec, Y., Santos, J. J., Ewald, F., Rousseau, J.-P., Kiselev, S., Pukhov, A., Hosokai, T. and Malka, V. 2005 Observation of laser-pulse shortening in nonlinear plasma waves. Phys. Rev. Lett. 95 (20), 205003.CrossRefGoogle ScholarPubMed
Faure, J., Malka, V., Marquès, J.-R., Amiranoff, F., Courtois, C., Najmudin, Z., Krushelnick, K., Salvati, M., Dangor, A. E., et al. 2000 Interaction of an ultra-intense laser pulse with a nonuniform preformed plasma. Phys. Plasmas 7 (7), 30093016.CrossRefGoogle Scholar
Fonseca, R. A., Silva, L. O., Tsung, F. S., Decyk, V. K., Lu, W., Ren, C., Mori, W. B., Deng, S., Lee, S., et al. 2002 Osiris: A three-dimensional, fully relativistic particle in cell code for modeling plasma based accelerators In: Computational Science-ICCS, Pt III, Proceedings, Lecture Notes in Computer Science, vol. 2331. Berlin: Springer, pp. 342351.Google Scholar
Geddes, C. G. R., Toth, C., van Tilborg, J., Esarey, E., Schroeder, C. B., Bruhwiler, D., Nieter, C., Cary, J. and Leemans, W. P. 2004 High-quality electron beams from a laser wakefield accelerator using plasma-channel guiding. Nature 431 (7008), 538541.CrossRefGoogle ScholarPubMed
Gordon, D. F., Hafizi, B., Hubbard, R. F., Peñano, J. R., Sprangle, P. and Ting, A. 2003 Asymmetric self-phase modulation and compression of short laser pulses in plasma channels. Phys. Rev. Lett. 90 (21), 215001.CrossRefGoogle ScholarPubMed
Hemker, R. G. 2000 Particle in cell modeling of plasma-based accelerators in two and three dimensions. PhD thesis, University of California, Los Angeles.Google Scholar
Hidding, B., Amthor, K. U., Liesfeld, B., Schwoerer, H., Karsch, S., Geissler, M., Veisz, L., Schmid, K., Gallacher, J. G., et al. 2006 Generation of quasimonoenergetic electron bunches with 80-fs laser pulses. Phys. Rev. Lett. 96 (10), 105004.CrossRefGoogle ScholarPubMed
Kneip, S., McGuffey, C., Martins, J. L., Martins, S. F., Bellei, C., Chvykov, V., Dollar, F., Fonseca, R., Huntington, C., et al. 2010 Bright spatially coherent synchrotron X-rays from a table-top source. Nature Phys. 6 (12), 980.CrossRefGoogle Scholar
Kneip, S., Nagel, S. R., Bellei, C., Bourgeois, N., Dangor, A. E., Gopal, A., Heathcote, R., Mangles, S. P. D., Marquès, J. R., et al. 2008 Observation of synchrotron radiation from electrons accelerated in a petawatt-laser-generated plasma cavity. Phys. Rev. Lett. 100 (10), 105006.CrossRefGoogle Scholar
Kneip, S., Nagel, S. R., Martins, S. F., Mangles, S. P. D., Bellei, C., Chekhlov, O., Clarke, R. J., Delerue, N., Divall, E. J., et al. 2009 Near-GeV acceleration of electrons by a nonlinear plasma wave driven by a self-guided laser pulse. Phys. Rev. Lett. 103 (3), 035002.CrossRefGoogle ScholarPubMed
Lu, W., Tzoufras, M., Joshi, C., Tsung, F. S., Mori, W. B., Vieira, J., Fonseca, R. A. and Silva, L. O. 2007 Generating multi-GeV electron bunches using single stage laser wakefield acceleration in a 3D nonlinear regime. Phys. Rev. st Accel. Beams 10 (6), 12.CrossRefGoogle Scholar
Malka, V., Fritzler, S., Lefebvre, E., Aleonard, M.-M., Burgy, F., Chambaret, J.-P., Chemin, J.-F., Krushelnick, K., Malka, G., et al. 2002 Electron acceleration by a wake field forced by an intense ultrashort laser pulse. Science 298 (5598), 15961600.CrossRefGoogle ScholarPubMed
Mangles, S. P. D., Murphy, C. D., Najmudin, Z., Thomas, A. G. R., Collier, J. L., Dangor, A. E., Divall, E. J., Foster, P. S., Gallacher, J. G., et al. 2004 Monoenergetic beams of relativistic electrons from intense laser–plasma interactions. Nature 431 (7008), 535538.CrossRefGoogle ScholarPubMed
Mangles, S. P. D., Walton, B. R., Tzoufras, M., Najmudin, Z., Clarke, R. J., Dangor, A. E., Evans, R. G., Fritzler, S., Gopal, A., et al. 2005 Electron acceleration in cavitated channels formed by a petawatt laser in low-density plasma. Phys. Rev. Lett. 94 (24), 245001.CrossRefGoogle Scholar
Meyer-ter-Vehn, J. and Sheng, Z. M. 1999 On electron acceleration by intense laser pulses in the presence of a stochastic field. Phys. Plasmas 6 (3), 641644.CrossRefGoogle Scholar
Modena, A., Najmudin, Z., Dangor, A. E., Clayton, C. E., Marsh, K. A., Joshi, C., Malka, V., Darrow, C. B., Danson, C., et al. 1995 Electron acceleration from the breaking of relativistic plasma-waves. Nature 377 (6550), 606608.CrossRefGoogle Scholar
Mori, W. B., Decker, C. D., Hinkel, D. E. and Katsouleas, T. 1994 Raman forward scattering of short-pulse high-intensity lasers. Phys. Rev. Lett. 72 (10), 14821485.CrossRefGoogle ScholarPubMed
Nakajima, K., Fisher, D., Kawakubo, T., Nakanishi, H., Ogata, A., Kato, Y., Kitagawa, Y., Kodama, R., Mima, K., et al. 1995 Observation of ultrahigh gradient electron acceleration by a self-modulated intense short laser-pulse. Phys. Rev. Lett. 74 (22), 44284431.CrossRefGoogle ScholarPubMed
Pukhov, A. and Meyer-ter-Vehn, J. 2002 Laser wake field acceleration: The highly non-linear broken-wave regime. Appl. Phys. B 74, 355361.CrossRefGoogle Scholar
Pukhov, A., Sheng, Z. M. and Meyer-ter-Vehn, J. 1999 Particle acceleration in relativistic laser channels. Phys. Plasmas 6 (7), 28472854.CrossRefGoogle Scholar
Ralph, J. E., Marsh, K. A., Pak, A. E., Lu, W., Clayton, C. E., Fang, F., Mori, W. B. and Joshi, C. 2009 Self-guiding of ultrashort, relativistically intense laser pulses through underdense plasmas in the blowout regime. Phys. Rev. Lett. 102 (17), 175003.CrossRefGoogle ScholarPubMed
Santala, M. I., Najmudin, Z., Clark, E. L., Tatarakis, M., Krushelnick, K., Dangor, A. E., Malka, V., Faure, J., Allott, R., et al. 2001 Observation of a hot high-current electron beam from a self-modulated laser wakefield accelerator. Phys. Rev. Lett. 86 (7), 1227.CrossRefGoogle ScholarPubMed
Schreiber, J., Bellei, C., Mangles, S. P. D., Kamperidis, C., Kneip, S., Nagel, S. R., Palmer, C. A. J., Rajeev, P. P., Streeter, M. J. V., et al. 2010 Complete temporal characterization of asymmetric pulse compression in a laser wakefield. Phys. Rev. Lett. 105 (23), 235003.CrossRefGoogle Scholar
Sheng, Z. M., Mima, K., Sentoku, Y., Jovanovic, M. S., Taguchi, T., Zhang, J. and Meyer-ter-Vehn, J. 2002 Stochastic heating and acceleration of electrons in colliding laser fields in plasma. Phys. Rev. Lett. 88, 055004.CrossRefGoogle ScholarPubMed
Sprangle, P., Esarey, E., Krall, J. and Joyce, G. 1992 Propagation and guiding of intense laser pulses in plasmas. Phys. Rev. Lett. 69 (15), 22002203.CrossRefGoogle ScholarPubMed
Sun, G. Z., Ott, E., Lee, Y. C. and Guzdar, P. 1987 Self-focusing of short intense pulses in plasmas. Phys. Fluids 30 (2), 526532.CrossRefGoogle Scholar
Tajima, T. and Dawson, J. M. 1979 Laser electron-accelerator Phys. Rev. Lett. 43 (4), 267270.CrossRefGoogle Scholar
Thomas, A. G. R., Najmudin, Z., Mangles, S. P. D., Murphy, C. D., Dangor, A. E., Kamperidis, C., Lancaster, K. L., Mori, W. B., Norreys, P. A., et al. 2007 Effect of laser-focusing conditions on propagation and monoenergetic electron production in laser-wakefield accelerators. Phys. Rev. Lett. 98 (9), 095004.CrossRefGoogle ScholarPubMed
Tsung, F. S., Lu, W., Tzoufras, M., Mori, W. B., Joshi, C., Vieira, J. M., Silva, L. O. and Fonseca, R. A. 2006 Simulation of monoenergetic electron generation via laser wakefield accelerators for 5-25 TW lasers. Phys. Plasmas 13 (5), 056708.CrossRefGoogle Scholar
Tsung, F. S., Narang, R., Mori, W. B., Joshi, C., Fonseca, R. A. and Silva, L. O. 2004 Near-GeV energy laser-wakefield acceleration of self-injected electrons in a centimeter-scale plasma channel. Phys. Rev. Lett. 93 (18), 185002.CrossRefGoogle Scholar
Tzeng, K. C., Mori, W. B. and Decker, C. D. 1996 Anomalous absorption and scattering of short-pulse high-intensity lasers in underdense plasmas. Phys. Rev. Lett. 76 (18), 33323335.CrossRefGoogle ScholarPubMed
Umstadter, D., Chen, S. Y., Maksimchuk, A., Mourou, G. and Wagner, R. 1996 Nonlinear optics in relativistic plasmas and laser wake field acceleration of electrons. Science 273 (5274), 472475.CrossRefGoogle ScholarPubMed

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 27 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 18th April 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Self-modulated wakefield acceleration in a centimetre self-guiding channel
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Self-modulated wakefield acceleration in a centimetre self-guiding channel
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Self-modulated wakefield acceleration in a centimetre self-guiding channel
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *