Skip to main content Accessibility help
×
Home
Hostname: page-component-59b7f5684b-qn7h5 Total loading time: 0.446 Render date: 2022-09-24T17:51:49.846Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "displayNetworkTab": true, "displayNetworkMapGraph": false, "useSa": true } hasContentIssue true

Probabilistic effect of metastable excitation on lock-in amplified plasma laser-induced fluorescence diagnostics at modulation frequencies comparable to the fluorescence frequency

Published online by Cambridge University Press:  30 May 2022

Di Jiang
Affiliation:
Institute of Plasma Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, PR China
Chen-yao Jin
Affiliation:
Institute of Plasma Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, PR China University of Science and Technology of China, Hefei 230026, PR China
Chi-Shung Yip*
Affiliation:
Institute of Plasma Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, PR China
Wei Zhang*
Affiliation:
Institute of Plasma Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, PR China
Guo-Sheng Xu
Affiliation:
Institute of Plasma Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, PR China
Liang Wang
Affiliation:
Institute of Plasma Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, PR China
*
Email addresses for correspondence: csyip@ipp.ac.cn, zhangwei@ipp.ac.cn
Email addresses for correspondence: csyip@ipp.ac.cn, zhangwei@ipp.ac.cn

Abstract

In this paper, effects of discharge parameters and modulation frequency on the signal of laser-induced fluorescence measurements of ion velocity distribution functions are investigated in the LIF Test Source. A maximum modulation frequency is found for each given set of parameters, beyond which the signal gradually declines. Meanwhile, this maximum modulation frequency occurred consistently at ~1/10 of the theoretical frequency limit and photon counts received by a photomultiplier tube, which indicates that as modulation frequency and the associated per-pulse-excitation-event count decrease, the transition from the macroscopic statistical signal to the microscopic probabilistic signal is a gradual process.

Type
Research Article
Copyright
Copyright © The Author(s), 2022. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barnat, E.V. & Weatherford, B.R. 2015 2D laser-collision induced fluorescence in low-pressure argon discharges. Plasma Sources Sci. Technol. 24, 055024.CrossRefGoogle Scholar
Boivin, R.F. & Scime, E.E. 2003 Laser induced fluorescence in Ar and He plasmas with a tunable diode laser. Rev. Sci. Instrum. 74, 43524360.CrossRefGoogle Scholar
Chu, F., Hood, R. & Skiff, F. 2019 Measurement of wave-particle interaction and metastable lifetime using laser-induced fluorescence. Phys. Plasmas 26, 042111.CrossRefGoogle Scholar
Chu, F., Mattingly, S.W., Berumen, J., Hood, R. & Skiff, F. 2017 On determining the fraction of metastable ions produced by direct ionization. J. Instrum. 12, C11005C11005.CrossRefGoogle Scholar
Chu, F. & Skiff, F. 2018 A Lagrangian model for laser-induced fluorescence and its application to measurements of plasma ion temperature and electrostatic waves. Phys. Plasmas 25, 013506.CrossRefGoogle Scholar
Cooper, C.S. & Laurendeau, N.M. 1997 Effect of pulsed dye-laser wavelength stabilization on spectral overlap in atmospheric NO fluorescence studies. Appl. Opt. 36, 52625265.CrossRefGoogle ScholarPubMed
Duan, X., Cheng, M., Yang, X., Guo, N., Li, X., Wang, M. & Guo, D. 2020 Investigation on ion behavior in magnetically shielded and unshielded Hall thrusters by laser-induced fluorescence. J. Appl. Phys. 127, 093301.CrossRefGoogle Scholar
Hood, R., Baalrud, S.D., Merlino, R.L. & Skiff, F. 2020 Laser-induced fluorescence measurements of ion fluctuations in electron and ion presheaths. Phys. Plasmas 27, 053509.CrossRefGoogle Scholar
Jacobs, B., Gekelman, W., Pribyl, P., Barnes, M. & Kilgore, M. 2007 Laser-induced fluorescence measurements in an inductively coupled plasma reactor. Appl. Phys. Lett. 91, 161505.CrossRefGoogle Scholar
Keesee, A.M., Scime, E.E. & Boivin, R.F. 2004 Laser-induced fluorescence measurements of three plasma species with a tunable diode laser. Rev. Sci. Instrum 75, 40914093.CrossRefGoogle Scholar
Lee, D., Hershkowitz, N. & Severn, G.D. 2007 a Measurements of Ar+ and Xe+ velocities near the sheath boundary of Ar–Xe plasma using two diode lasers. Appl. Phys. Lett. 91, 041505.Google Scholar
Lee, D., Oksuz, L. & Hershkowitz, N. 2007 b Exact solution for the generalized Bohm criterion in a two-ion-species plasma. Phys. Rev. Lett. 99, 155004.CrossRefGoogle Scholar
Lee, D., Severn, G., Oksuz, L. & Hershkowitz, N. 2006 Laser-induced fluorescence measurements of argon ion velocities near the sheath boundary of an argon–xenon plasma. J. Phys. D: Appl. Phys. 39, 52305235.CrossRefGoogle Scholar
Mattingly, S.W. & Skiff, F. 2018 FPGA based demodulation of laser induced fluorescence in plasmas. Rev. Sci. Instrum. 89, 043508.CrossRefGoogle ScholarPubMed
Mazouffre, S. 2012 Laser-induced fluorescence diagnostics of the cross-field discharge of Hall thrusters. Plasma Sources Sci. Technol. 22, 013001.CrossRefGoogle Scholar
Mazouffre, S., Gawron, D., Kulaev, V. & Sadeghi, N. 2008 Xe+ ion transport in the crossed-field discharge of a 5-kW-class hall effect thruster. IEEE Trans. Plasma Sci. 36, 19671976.CrossRefGoogle Scholar
Moore, N.B., Gekelman, W. & Pribyl, P. 2016 Ion energy distribution function measurements by laser-induced fluorescence in a dual radio frequency sheath. J. Vac. Sci. Technol. A 34, 021303.CrossRefGoogle Scholar
Romadanov, I., Raitses, Y., Diallo, A., Hara, K., Kaganovich, I.D. & Smolyakov, A. 2018 On limitations of laser-induced fluorescence diagnostics for xenon ion velocity distribution function measurements in Hall thrusters. Phys. Plasmas 25, 033501.CrossRefGoogle Scholar
Severn, G.D., Edrich, D.A. & Mcwilliams, R. 1998 Argon ion laser-induced fluorescence with diode lasers. Rev. Sci. Instrum. 69, 1015.CrossRefGoogle Scholar
Severn, G., Lee, D. & Hershkowitz, N. 2007 Xenon ion laser-induced fluorescence using a visible tunable diode laser near 680 nm. Rev. Sci. Instrum. 78, 116105.CrossRefGoogle ScholarPubMed
Sun, X., Cohen, S.A., Scime, E.E. & Miah, M. 2005 On-axis parallel ion speeds near mechanical and magnetic apertures in a helicon plasma device. Phys. Plasmas 12, 103509.CrossRefGoogle Scholar
Wang, X. & Hershkowitz, N. 2006 Experimental studies of the two-ion species flow in the plasma presheath. Phys. Plasmas 13, 053503.CrossRefGoogle Scholar
Wilson, J.M., Finn, N., James, B.W. & Falconer, I.S. 1995 A comparison of laser-induced fluorescence measurements in hydrogen with collisional radiative model calculations. J. Phys. B: Atom. Mol. Opt. Phys. 28, 765772.CrossRefGoogle Scholar
Yip, C.-S., Hershkowitz, N., Severn, G. & Baalrud, S.D. 2016 Laser-induced fluorescence measurements of argon and xenon ion velocities near the sheath boundary in 3 ion species plasmas. Phys. Plasmas 23, 050703.CrossRefGoogle Scholar
Yip, C.S., Hershkowitz, N. & Severn, G. 2010 Experimental test of instability-enhanced collisional friction for determining ion loss in two ion species plasmas. Phys. Rev. Lett. 104, 225003.CrossRefGoogle ScholarPubMed
Yip, C.S. & Jiang, D. 2021 Laser induced fluorescence diagnostic for velocity distribution functions: applications, physics, methods and developments. Plasma Sci. Technol. 23, 055501.CrossRefGoogle Scholar
Zimmerman, D.C., Mcwilliams, R. & Edrich, D.A. 2005 Two-dimensional ion velocity distribution functions in inductively coupled argon plasma. Plasma Sources Sci. Technol. 14, 581588.CrossRefGoogle Scholar

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Probabilistic effect of metastable excitation on lock-in amplified plasma laser-induced fluorescence diagnostics at modulation frequencies comparable to the fluorescence frequency
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Probabilistic effect of metastable excitation on lock-in amplified plasma laser-induced fluorescence diagnostics at modulation frequencies comparable to the fluorescence frequency
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Probabilistic effect of metastable excitation on lock-in amplified plasma laser-induced fluorescence diagnostics at modulation frequencies comparable to the fluorescence frequency
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *