Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-12-04T00:24:13.708Z Has data issue: false hasContentIssue false

Plasma channel formation in the knife-like focus of laser beam

Published online by Cambridge University Press:  02 June 2020

O. G. Olkhovskaya
Affiliation:
Keldysh Institute of Applied Mathematics, Moscow, 125047, Russia
G. A. Bagdasarov
Affiliation:
Keldysh Institute of Applied Mathematics, Moscow, 125047, Russia
N. A. Bobrova
Affiliation:
Keldysh Institute of Applied Mathematics, Moscow, 125047, Russia Czech Technical University in Prague, Faculty of Nuclear Sciences and Physical Engineering, Brehova 7, 115 19 Prague 1, Czech Republic
V. A. Gasilov
Affiliation:
Keldysh Institute of Applied Mathematics, Moscow, 125047, Russia
L. V. N. Goncalves
Affiliation:
Institute of Physics ASCR, v.v.i. (FZU), ELI-Beamlines, 182 21 Prague, Czech Republic
C. M. Lazzarini
Affiliation:
Institute of Physics ASCR, v.v.i. (FZU), ELI-Beamlines, 182 21 Prague, Czech Republic
M. Nevrkla
Affiliation:
Czech Technical University in Prague, Faculty of Nuclear Sciences and Physical Engineering, Brehova 7, 115 19 Prague 1, Czech Republic Institute of Physics ASCR, v.v.i. (FZU), ELI-Beamlines, 182 21 Prague, Czech Republic
G. Grittani
Affiliation:
Institute of Physics ASCR, v.v.i. (FZU), ELI-Beamlines, 182 21 Prague, Czech Republic
S. S. Bulanov
Affiliation:
Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA94720, USA
A. J. Gonsalves
Affiliation:
Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA94720, USA
C. B. Schroeder
Affiliation:
Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA94720, USA
E. Esarey
Affiliation:
Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA94720, USA
W. P. Leemans
Affiliation:
Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA94720, USA Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607Hamburg, Germany
P. V. Sasorov*
Affiliation:
Keldysh Institute of Applied Mathematics, Moscow, 125047, Russia Institute of Physics ASCR, v.v.i. (FZU), ELI-Beamlines, 182 21 Prague, Czech Republic
S. V. Bulanov
Affiliation:
Institute of Physics ASCR, v.v.i. (FZU), ELI-Beamlines, 182 21 Prague, Czech Republic Prokhorov General Physics Institute RAS, Vavilov Str. 38, Moscow119991, Russia National Institutes for Quantum and Radiological Science and Technology (QST),Kansai Photon Science Institute, 8-1-7 Umemidai, Kizugawa,Kyoto, 619-0215, Japan
G. Korn
Affiliation:
Institute of Physics ASCR, v.v.i. (FZU), ELI-Beamlines, 182 21 Prague, Czech Republic
*
Email address for correspondence: pavel.sasorov@eli-beams.eu

Abstract

The plasma channel formation in the focus of a knife-like nanosecond laser pulse irradiating a gas target is studied theoretically, and in gas-dynamics computer simulations. The distribution of the electromagnetic field in the focus region, obtained analytically, is used to calculate the energy deposition in the plasma, which then is implemented in the magnetohydrodynamic computer code. The modelling of the channel evolution shows that the plasma profile, which can guide the laser pulse, is formed by the tightly focused short knife-like lasers. The results of the simulations show that a proper choice of the convergence angle of a knife-like laser beam (determined by the focal length of the last cylindrical lens), and laser pulse duration may provide a sufficient degree of azimuthal symmetry of the formed plasma channel.

Type
Research Article
Copyright
© The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aleksandrov, V. V., Gasilov, V. A., Grabovski, E. V., Gritsuk, A. N., Laukhin, Y. N., Mitrofanov, K. N., Oleinik, G. M., Olkhovskaya, O. G., Sasorov, P. V., Smirnov, V. P. et al. 2014 Increase in the energy density of the pinch plasma in 3D implosion of quasi-spherical wire arrays. Plasma Phys. Rep. 40, 939954.CrossRefGoogle Scholar
Aleksandrov, V., Branitski, A., Gasilov, V., Grabovskiy, E., Gritsuk, A., Mitrofanov, K., Olkhovskaya, O., Sasorov, P. & Frolov, I. 2019 Study of interaction between plasma flows and the magnetic field at the implosion of nested wire arrays. Plasma Phys. Control. Fusion 61, 035009.CrossRefGoogle Scholar
Ananyev, S. S., Bagdasarov, G. A., Danko, S. A., Demidov, B. A., Kazakov, E. D., Kalinin, Y. G., Kurilo, A. A., Olkhovskaya, O. G., Strizhakov, M. G., Gasilov, V. A. et al. 2017 Study of the anode plasma dynamics under the action of a high-power electron beam on epoxy resin. Plasma Phys. Rep. 43, 726.CrossRefGoogle Scholar
Bagdasarov, G., Sasorov, P., Gasilov, V., Boldarev, A., Olkhovskaya, O., Benedetti, C., Bulanov, S., Gonsalves, A., Mao, H. S., Schroeder, C. B. et al. 2017a Laser beam coupling with capillary discharge plasma for laser wakefield acceleration applications. Phys. Plasmas 24, 083109.CrossRefGoogle Scholar
Bagdasarov, G., Sasorov, P., Boldarev, A., Olkhovskaya, O., Gasilov, V., Gonsalves, A., Barber, S., Bulanov, S. S., Schroeder, C. B., van Tilborg, J. et al. 2017b Plasma equilibrium inside various cross-section capillary discharges. Phys. Plasmas 24, 053111.CrossRefGoogle Scholar
Bagdasarov, G., Bobrova, N., Boldarev, A., Olkhovskaya, O., Sasorov, P., Gasilov, V., Barber, S., Bulanov, S., Gonsalves, A., Schroeder, C. B. et al. 2017c On production and asymmetric focusing of flat electron beams using rectangular capillary discharge plasmas. Phys. Plasmas 24, 123120.CrossRefGoogle Scholar
Bobrova, N. A., Esaulov, A. A., Sakai, J.-I., Sasorov, P. V., Spence, D. J., Butler, A., Hooker, S. M. & Bulanov, S. V. 2002 Simulations of a hydrogen-filled capillary discharge waveguide. Phys. Rev. E 65, 016407.Google ScholarPubMed
Bobrova, N. A., Sasorov, P. V., Benedetti, C., Bulanov, S. S., Geddes, C. G. R., Schroeder, C. B., Esarey, E. & Leemans, W. P. 2013 Laser-heater assisted plasma channel formation in capillary discharge waveguides. Phys. Plasmas 20, 020703.CrossRefGoogle Scholar
Braginskii, S. I. 1963 Reviews of Plasma Physics (ed. Leontovich, M. A.), vol. 1. Consultants Bureau.Google Scholar
Durfee, C. G. & Milchberg, H. M. 1993 Light pipe for high intensity laser pulses. Phys. Rev. Lett. 71, 2409.CrossRefGoogle ScholarPubMed
Esarey, E., Schroeder, C. B. & Leemans, W. P. 2009 Physics of laser-driven plasma-based electron accelerators. Rev. Mod. Phys. 81, 1229.CrossRefGoogle Scholar
Gasilov, V., Boldarev, A., Dyachenko, S., Olkhovskaya, O., Kartasheva, E., Bagdasarov, G., Boldyrev, S., Gasilova, I., Shmyrov, V., Tkachenko, S. et al. 2012 Towards an application of high-performance computer systems to 3D simulations of high energy density plasmas in Z-pinches. In Applications, Tools and Techniques on the Road to Exascale Computing (ed. De Bosschere, K., D’Hollander, E. H., Joubert, G. R., Padua, D. & Peters, F.), Advances in Parallel Computing, vol. 22, p. 235. IOS Press.Google Scholar
Gasilov, V. A., Grushin, A. S., Ermakov, A. S., Olkhovskaya, O. G. & Petrov, I. B. 2019 Simulation of the destruction of polymer materials under the action of intense energy flows. Math. Models Comput. Simul. 11, 198.CrossRefGoogle Scholar
Geddes, C. G. R., Toth, C., van Tilborg, J., Esarey, E., Schroeder, C. B., Bruhwiler, D., Nieter, C., Cary, J. & Leemans, W. P. 2004 High-quality electron beams from a laser wakefield accelerator using plasma-channel guiding. Nature 431, 538.CrossRefGoogle ScholarPubMed
Geddes, C. G. R., Toth, C., van Tilborg, J., Esarey, E., Schroeder, C. B., Cary, J. & Leemans, W. P. 2005 Guiding of relativistic laser pulses by preformed plasma channels. Phys. Rev. Lett. 95, 145002.CrossRefGoogle ScholarPubMed
Gonsalves, A. J., Nakamura, K., Daniels, J., Benedetti, C., Pieronek, C., de Raadt, T., Steinke, S., Bin, J., Bulanov, S. S., van Tilborg, J. et al. 2019 Petawatt laser guiding and electron beam acceleration to 8 GeV in a laser-heated capillary discharge waveguide. Phys. Rev. Lett. 122, 084801.CrossRefGoogle Scholar
Grabovski, E. V., Aleksandrov, V. V., Volkov, G. S., Gasilov, V. A., Gribov, A. N., Gritsuk, A. N., Dyachenko, S. V., Zaitsev, V. I., Medovshchikov, S. F., Mitrofanov, K. N. et al. 2008 Use of conical wire arrays for modeling three-dimensional MHD implosion effects. Plasma Phys. Rep. 34, 815.CrossRefGoogle Scholar
Korn, G. & Korn, T. 1968 Mathematical Handbook. McGrow-Hill Book Co.Google Scholar
Kurzweil, Y., Livne, E. & Meerson, B. 2003 Vorticity production and turbulent cooling of ‘hot channels’ in gases: three dimensions versus two dimensions. Phys. Fluids 15, 752.CrossRefGoogle Scholar
Landau, L. D. & Lifshitz, E. M. 1960 Electrodynamics of Continous Media. Pergamon Press.Google Scholar
Leemans, W. P., Gonsalves, A. J., Mao, H.-S., Nakamura, K., Benedetti, C., Schroeder, C. B., Tóth, C., Daniels, J., Mittelberger, D. E., Bulanov, S. S. et al. 2014 Multi-GeV electron beams from capillary-discharge-guided subpetawatt laser pulses in the self-trapping regime. Phys. Rev. Lett. 113, 245002.CrossRefGoogle ScholarPubMed
Levato, T., Bonora, S., Grittani, G. M., Lazzarini, C. M., Nawaz, M. F., Nevrkla, M., Villanova, L., Ziano, R., Bassanese, S., Bobrova, N. et al. 2018 HELL: high-energy electrons by laser light, a user-oriented experimental platform at ELI beamlines. Appl. Sci. 8, 1565.CrossRefGoogle Scholar
Lifshitz, E. M. & Pitaevskii, L. P. 2002 Physical Kinetics. Pergamon Press.Google Scholar
Morozov, A., Goltsov, A., Chen, Q., Scully, M. & Suckewer, S. 2018 Ionization assisted self-guiding of femtosecond laser pulses. Phys. Plasmas 25, 053110.CrossRefGoogle Scholar
Mourou, G. A., Tajima, T. & Bulanov, S. V. 2006 Optics in the relativistic regime. Rev. Mod. Phys. 78, 309.CrossRefGoogle Scholar
Olkhovskaya, O. G., Basko, M. M., Sasorov, P. V., Vitchev, I. Y., Novikov, V. G., Boldarev, A. S., Gasilov, V. A. & Tkachenko, S. I. 2015 Radiative power and X-ray spectrum numerical estimations for wire array Z-pinches. J. Phys.: Conf. Ser. 653, 012148.Google Scholar
Olver, F. W. J., Lozier, D. W., Boisvert, R. F. & Clark, C. W. 2010 NIST Handbook of Mathematical Functions. Cambridge University Press.Google Scholar
Ragozin, E., Levashov, V., Mednikov, K., Pirozhkov, A. & Sasorov, P. 2002 Interaction of a pulsed gas target with Nd-laser radiation and laser-produced plasma. In Proceedings of SPIE 4781, Advances in Laboratory-Based X-Ray Sources and Optics III (ed. Khounsary, A. M. & MacDonald, C. A.), p. 17; doi:10.1117/12.450964.Google Scholar
Shalloo, R. J., Arran, C., Picksley, A., von Boetticher, A., Corner, L., Holloway, J., Hine, G., Jonnerby, J., Milchberg, H. M., Thornton, C. et al. 2019 Low-density hydrodynamic optical-field-ionized plasma channels generated with an axicon lens. Phys. Rev. Accel. Beams 22, 041302.CrossRefGoogle Scholar
Siegman, A. E. 1993 Defining, measuring, and optimizing laser beam quality.SPIE 1868, Laser Resonators and Coherent Optics: Modeling, Technology, and Applications, (13 August 1993); doi:10.1117/12.150601.Google Scholar
Sobelman, I. I. 1992 Atomic Spectra and Radiative Transitions, 2nd edn.Springer.CrossRefGoogle Scholar
Svelto, O. 2010 Principles of Lasers, 5th edn.Springer.CrossRefGoogle Scholar
Tajima, T. & Dawson, J. M. 1979 Laser electron accelerator. Phys. Rev. Lett. 43, 267.CrossRefGoogle Scholar
Volfbeyn, P. & Leemans, W. P. 1998 Experimental studies of laser guiding in plasma channels. In Proceedings of the 6th European Particle Accelerator Conference (ed. Myers, S., Liljeby, L., Petit-Jean-Genaz, Ch., Poole, J. & Rensfelt, K. G.), p. 265. Institute of Physics.Google Scholar
Volfbeyn, P., Esarey, E. & Leemans, W. P. 1999 Guiding of laser pulses in plasma channels created by the ignitor-heater technique. Phys. Plasmas 6, 2269.CrossRefGoogle Scholar