Skip to main content Accessibility help
×
Home

Magnetic energy dissipation during the current quench of disruption in EAST

Published online by Cambridge University Press:  08 October 2020


T. Tang
Affiliation:
Institute of Plasma Physics, Chinese Academy of Science, PO BOX 1126, Hefei230031, PR China University of Science and Technology of China, Hefei230031, PR China
L. Zeng
Affiliation:
Institute of Plasma Physics, Chinese Academy of Science, PO BOX 1126, Hefei230031, PR China
D. L. Chen
Affiliation:
Institute of Plasma Physics, Chinese Academy of Science, PO BOX 1126, Hefei230031, PR China
R. S. Granetz
Affiliation:
MIT Plasma Science and Fusion Center, Cambridge, MA02139, USA
S. T. Mao
Affiliation:
Institute of Plasma Physics, Chinese Academy of Science, PO BOX 1126, Hefei230031, PR China
Y. M. Duan
Affiliation:
Institute of Plasma Physics, Chinese Academy of Science, PO BOX 1126, Hefei230031, PR China
L. Zhang
Affiliation:
Institute of Plasma Physics, Chinese Academy of Science, PO BOX 1126, Hefei230031, PR China
H. D. Zhuang
Affiliation:
Institute of Plasma Physics, Chinese Academy of Science, PO BOX 1126, Hefei230031, PR China
X. Zhu
Affiliation:
Advanced Energy Research Center, Shenzhen University, Shenzhen518060, PR China Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen518060, PR China
H. Q. Liu
Affiliation:
Institute of Plasma Physics, Chinese Academy of Science, PO BOX 1126, Hefei230031, PR China
B. Shen
Affiliation:
Institute of Plasma Physics, Chinese Academy of Science, PO BOX 1126, Hefei230031, PR China
Y. X. Jie
Affiliation:
Institute of Plasma Physics, Chinese Academy of Science, PO BOX 1126, Hefei230031, PR China
X. Gao
Affiliation:
Institute of Plasma Physics, Chinese Academy of Science, PO BOX 1126, Hefei230031, PR China
Corresponding

Abstract

A disruption database characterizing the current quench of disruptions with ITER-like tungsten divertor has been developed on EAST. It provides a large number of plasma parameters describing the predisruptive plasma, current quench time, eddy current, and mitigation by massive impurity injection, which shows that the current quench time strongly depends on magnetic energy and post-disruption electron temperature. Further, the energy balance and magnetic energy dissipation during the current quench phase has been well analysed. Magnetic energy is also demonstrated to be dissipated mainly by ohmic reheating and inductive coupling, and both of the two channels have great effects on current quench time. Also, massive gas injection is an efficient method to speed up the current quench and increase the fraction of impurity radiation.


Type
Research Article
Copyright
Copyright © The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below.

References

Chen, D., Granetz, R. S., Shen, B., Yang, F., Qian, J. & Xiao, B. 2015 Characterization of the plasma current quench during disruption in EAST tokamak. Chin. Phys. B 24 (2), 025205.10.1088/1674-1056/24/2/025205CrossRefGoogle Scholar
Chen, D., Shen, B., Granetz, R. S., Qian, J. P., Zhuang, H. D., Zeng, L., Duan, Y., Shi, T., Wang, H., Sun, Y. & Xiao, B. J. 2018 Disruption mitigation with high-pressure helium gas injection on EAST tokamak. Nucl. Fusion 58 (3), 036003.10.1088/1741-4326/aaa139CrossRefGoogle Scholar
Chen, D., Shen, B., Qian, J. P., Sun, Y. W., Liu, G. J., Shi, T. H., Zhuang, H. D. & Xiao, B. J. 2014 Observation and analysis of halo current in EAST. Chin. Phys. B 23 (6), 065205.10.1088/1674-1056/23/6/065205CrossRefGoogle Scholar
Eidietis, N. W., Gerhardt, S. P., Granetz, R. S., Kawano, Y., Lehnen, M., Lister, J. B., Pautasso, G., Riccardo, V., Tanna, R. L. & Thornton, A. J. and The ITPA Disruption Database Participants 2015 The ITPA disruption database. Nucl. Fusion 55 (6), 063030.10.1088/0029-5515/55/6/063030CrossRefGoogle Scholar
Finken, K. H., Kraemer-Flecken, A., Lehnen, M. & Savtchkov, A. 2003 Modeling approach to a 3D simulation of transport in TEXTOR-DED laminar zone with a finite element method. J. Nucl. Mater. 1247, 313316.Google Scholar
Gerhardt, S. P., Menard, J. E. & the NSTX Team 2009 Characterization of the plasma current quench during disruptions in the national spherical torus experiment. Nucl. Fusion 49 (2), 025005.10.1088/0029-5515/49/2/025005CrossRefGoogle Scholar
Granetz, R. S., Hollmann, E. M., Whyte, D. G., Izzo, V. A., Antar, G. Y., Bader, A., Bakhtiari, M., Biewer, T., Boedo, J. A., Evans, T. E., et al. 2007 Gas jet disruption mitigation studies on alcator C-Mod and DIII-D. Nucl. Fusion 47 (9), 10861091.10.1088/0029-5515/47/9/003CrossRefGoogle Scholar
Hender, T. C., Wesley, J. C., Bialek, J., Bondeson, A., Boozer, A. H., Buttery, R. J., Garofalo, A., Goodman, T. P., Granetz, R. S., Gribov, Y., et al. 2007 Progress in the ITER physics basis chapter 3: MHD stability, operational limits and disruptions. Nucl. Fusion 47 (6), S128S202.10.1088/0029-5515/47/6/S03CrossRefGoogle Scholar
Hilton, F. L. & Hazeltine, R. D. 1976 Theory of plasma transport in toroidal confinement systems. Rev. Mod. Phys. 48 (2), 239.Google Scholar
Hutchinson, I. H., Boivin, R., Bombarda, F., Bonoli, P., Fairfax, S., Fiore, C., Goetz, J., Golovato, S., Granetz, R. S., Greenwald, M., et al. 1994 1st results from ALCATOR-C-MOD. Phys. Plasmas 1 (5), 1511.10.1063/1.870701CrossRefGoogle Scholar
Isayama, A. for the JT-60 Team 2011 Overview of JT-60 U results towards the resolution of key physics and engineering issues in ITER and JT-60SA. Nucl. Fusion 51 (9), 094010.10.1088/0029-5515/51/9/094010CrossRefGoogle Scholar
ITER Physics Expert Group on Disruptions, Plasma Control and MHD & ITER Physics Basis Editors 1999 Chapter 3 MHD stability, operational limits and disruptions. Nucl. Fusion 39 (12), 2321.Google Scholar
Lehnen, M., Arnoux, G., Brezinsek, S., Flanagan, J., Gerasimov, S. N., Hartmann, N., Hender, T. C., Huber, A., Jachmich, S., Kiptily, V., et al. 2013 Impact and mitigation of disruptions with the ITER-like wall in JET. Nucl. Fusion 53 (9), 093007.10.1088/0029-5515/53/9/093007CrossRefGoogle Scholar
Liu, G. J., Wan, B. N., Qian, J. P., Sun, Y. W., Xiao, B. J., Shen, B., Luo, Z. P., Ji, X. & Chen, S. L. 2012 Effect of passive plates on vertical instability in the EAST tokamak. Chin. Phys. B 21 (8), 085201.10.1088/1674-1056/21/8/085201CrossRefGoogle Scholar
Luxon, J. L. 2002 A design retrospective of the DIII-D tokamak. Nucl. Fusion 42 (5), 614.10.1088/0029-5515/42/5/313CrossRefGoogle Scholar
Nygren, R., Lutz, T., Walsh, D., Martin, G., Chatelier, M., Loarer, T. & Guilhem, D. 1997 Runaway electron damage to the tore supra phase III outboard pump limiter. J. Nucl. Mater. 522, 241243.Google Scholar
Pautasso, G., Fuchs, C. J., Gruber, O., Maggi, C. F., Maraschek, M., Pütterich, T., Rohde, V., Wittmann, C., Wolfrum, E., Cierpka, P., et al. 2007 Plasma shut-down with fast impurity puff on ASDEX upgrade. Nucl. Fusion 47 (8), 900.10.1088/0029-5515/47/8/023CrossRefGoogle Scholar
Riccardo, V., Barabachi, P. & Sugihara, M. 2005 Characterization of plasma current quench at JET. Plasma Phys. Control. Fusion 47 (1), 117129.10.1088/0741-3335/47/1/007CrossRefGoogle Scholar
Riccardo, V. & JET EFDA Contributors 2003 Disruptions and disruption mitigation. Plasma Phys. Control. Fusion 45 (12A), A269.10.1088/0741-3335/45/12A/018CrossRefGoogle Scholar
Riccardo, V., Noll, P. & Walker, S. P. 2000 Forces between plasma, vessel and TF coils during AVDE at JET. Nucl. Fusion 40 (10), 1805.10.1088/0029-5515/40/10/311CrossRefGoogle Scholar
Romanelli, F. & JET EFDA Contributors 2013 Overview of the JET results with the ITER-like wall. Nucl. Fusion 53 (10), 104002.10.1088/0029-5515/53/10/104002CrossRefGoogle Scholar
Shibata, Y., Watanabe, K. Y., Ohno, N., Okamoto, M., Isayama, A., Kurihara, K., Oyama, N., Nakano, T., Kawano, Y. & Sugihara, M. 2011 Validation of the current decay model in the initial phase of current quench in high bp disruptive discharges of JT-60 U. InProceedings of 38th EPS conference on plasma physics, Strasbourg. 35G P5 079.Google Scholar
Shibata, Y., Watanabe, K. Y., Okamoto, M. & Ohno, N. 2010 Study of current decay time during disruption in JT-60 U tokamak. Nucl. Fusion 50 (2), 025015.10.1088/0029-5515/50/2/025015CrossRefGoogle Scholar
Spitzer, L. & Harm, R. 1953 Transport phenomena in a completely ionized gas. Phys. Rev. 89 (5), 977.10.1103/PhysRev.89.977CrossRefGoogle Scholar
Stroth, U., Adamek, J., Aho-Mantila, J., Akaslompolo, S., Amdor, C., Anigioni, C., Balden, M., Bardin, M., Barrera Orte, L., Behler, K., et al. 2013 Overview of ASDEX upgrade results. Nucl. Fusion 53 (10), 104003.10.1088/0029-5515/53/10/104003CrossRefGoogle Scholar
Summers, H. P. 2004 DAS user manual version 2.6. http://adas.phys.strath.ac.uk.Google Scholar
Thornton, A. J., Gibson, K. J., Harrison, J. R., Lehnen, M., Martin, R., Kirk, A. & the MAST Team 2012 Characterization of disruption mitigation via massive gas injection on MAST. Plasma Phys. Control. Fusion 54 (12), 125007.10.1088/0741-3335/54/12/125007CrossRefGoogle Scholar
Wan, Y. X., Li, J. G. & Weng, P. D. 2006 Overview progress and future plan of EAST project. In Proceedings of the 21st IAEA fusion energy conference, Chengdu, China.Google Scholar
Wesley, J. C., Hyatt, A. W., Strait, E. J., Schissel, D. P., Flanagan, S. M., Hender, T. C., Gribov, Y., deVries, P. C., Fredrickson, E. J., Gates, D. A., et al. 2006 Disruption characterization and database activities for ITER. In Proceedings of the 21st international conference on fusion energy, Chengdu, China.Google Scholar
Zhang, Y., Chen, Z. Y., Fang, D., Jin, W., Huang, Y. H., Wang, Z. J., Yang, Z. J., Chen, Z. P., Ding, Y. H., Zhang, M., et al. 2012 Characteristic of current quenches during disruptions in the J-TEXT tokamak. Phys. Scr. 86 (2), 025501.10.1088/0031-8949/86/02/025501CrossRefGoogle Scholar
Zhang, L., Morita, S., Xu, Z., Yang, X. D., Cheng, Y. X., Li, L., Wu, Z. W., Yang, Y., Ding, X. B., Oishi, T. & Dai, S. Y. 2019 Observation of tungsten spectra from W4+-W45+at 10-420 Å in EAST plasma. In 37th meeting of ITPA diagnostic topic group, Cadarache, France.Google Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 4
Total number of PDF views: 18 *
View data table for this chart

* Views captured on Cambridge Core between 08th October 2020 - 28th November 2020. This data will be updated every 24 hours.

Hostname: page-component-8465588854-nmqdb Total loading time: 1.007 Render date: 2020-11-28T21:57:20.679Z Query parameters: { "hasAccess": "0", "openAccess": "0", "isLogged": "0", "lang": "en" } Feature Flags last update: Sat Nov 28 2020 21:23:30 GMT+0000 (Coordinated Universal Time) Feature Flags: { "metrics": true, "metricsAbstractViews": false, "peerReview": true, "crossMark": true, "comments": true, "relatedCommentaries": true, "subject": true, "clr": false, "languageSwitch": true }

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Magnetic energy dissipation during the current quench of disruption in EAST
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Magnetic energy dissipation during the current quench of disruption in EAST
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Magnetic energy dissipation during the current quench of disruption in EAST
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *