Skip to main content Accessibility help
×
Home

Linear gyrokinetic studies with ORB5 en route to pair plasmas

Published online by Cambridge University Press:  21 May 2019


J. Horn-Stanja
Affiliation:
Max Planck Institute for Plasma Physics, 85748 Garching, Germany
A. Biancalani
Affiliation:
Max Planck Institute for Plasma Physics, 85748 Garching, Germany
A. Bottino
Affiliation:
Max Planck Institute for Plasma Physics, 85748 Garching, Germany
A. Mishchenko
Affiliation:
Max Planck Institute for Plasma Physics, 17491 Greifswald, Germany
Corresponding
E-mail address:

Abstract

The model of the global gyrokinetic particle-in-cell code ORB5 has been extended for the study of pair plasmas. This has been done by including the physics of the Debye shielding, by including the electron polarization density and by retaining the effects of the electron finite Larmor radius. This model is verified against previous numerical results for the cyclone base case tokamak scenario in deuterium plasmas, and for local pair plasma simulations. The linear dynamics of temperature-gradient driven instabilities and geodesic acoustic modes is investigated. Mass dependencies for different Debye lengths are studied.


Type
Research Article
Copyright
© Cambridge University Press 2019 

Access options

Get access to the full version of this content by using one of the access options below.

References

Barnes, M., Abiuso, P. & Dorland, W. 2018 Turbulent heating in an inhomogeneous magnetized plasma slab. J. Plasma Phys. 84, 905840306.CrossRefGoogle Scholar
Biancalani, A., Bottino, A., Lauber, P. & Zarzoso, D. 2014 Numerical validation of the electromagnetic gyrokinetic code NEMORB on global axisymmetric modes. Nucl. Fusion 54, 104004.CrossRefGoogle Scholar
Biancalani, A. et al. 2017 Cross-code gyrokinetic verification and benchmark on the linear collisionless dynamics of the geodesic acoustic mode. Phys. Plasmas 24, 062512.CrossRefGoogle Scholar
Bottino, A., Vernay, T., Scott, B., Brunner, S., Hatzky, R., Jolliet, S., McMillan, B. F., Tran, T. M. & Villard, L. 2011 Global simulations of tokamak microturbulence: finite- $\unicode[STIX]{x1D6FD}$ effects and collisions. Plasma Phys. Control. Fusion 53, 124027.CrossRefGoogle Scholar
Brizard, A. J. & Hahm, T. S. 2007 Foundations of nonlinear gyrokinetic theory. Rev. Mod. Phys. 79, 421.CrossRefGoogle Scholar
Dimits, A. M. et al. 2000 Comparisons and physics basis of tokamak transport models and turbulence simulations. Phys. Plasmas 7, 969.CrossRefGoogle Scholar
Dorland, W., Jenko, F., Kotschenreuther, M. & Rogers, B. N. 2000 Electron temperature gradient turbulence. Phys. Rev. Lett. 85, 5579.CrossRefGoogle ScholarPubMed
Görler, T., Tronko, N., Hornsby, W. A., Bottino, A., Kleiber, R., Norscini, C., Grandgirard, V., Jenko, F. & Sonnendrücker, E. 2016 Intercode comparison of gyrokinetic global electromagnetic modes. Phys. Plasmas 23, 072503.CrossRefGoogle Scholar
Helander, P. 2014 Microstability of magnetically confined electron-positron plasmas. Phys. Rev. Lett. 113, 135003.CrossRefGoogle ScholarPubMed
Helander, P. & Connor, J. W. 2016 Gyrokinetic stability theory of electron-positron plasmas. J. Plasma Phys. 82, 905820301.CrossRefGoogle Scholar
Hergenhahn, U. et al. 2018 Progress of the APEX experiment for creation of an electron-positron pair plasma. AIP Conf. Proc. 1928, 020004.CrossRefGoogle Scholar
Horn-Stanja, J. et al. 2018 Confinement of positrons exceeding 1 s in a supported magnetic dipole trap. Phys. Rev. Lett. 121, 235003.CrossRefGoogle Scholar
Jenko, F., Dorland, W., Kotschenreuther, M. & Rogers, B. N. 2000 Electron temperature gradient driven turbulence. Phys. Plasmas 7, 19041910.CrossRefGoogle Scholar
Jolliet, S., Bottino, A., Angelino, P., Hatzky, R., Tran, T. M., McMillan, B. F., Sauter, O., Appert, K., Idomura, Y. & Villard, L. 2007 A global collisionless PIC code in magnetic coordinates. Comput. Phys. Commun. 177, 409425.CrossRefGoogle Scholar
Kennedy, D., Mishchenko, A., Xanthopoulos, P. & Helander, P. 2018 Linear electrostatic gyrokinetics for electron–positron plasmas. J. Plasma Phys. 84, 905840606.CrossRefGoogle Scholar
Kotschenreuther, M., Rewoldt, G. & Tang, W. M. 1995 Comparison of initial value and eigenvalue codes for kinetic toroidal plasma instabilities. Comput. Phys. Commun. 88, 128.CrossRefGoogle Scholar
Lee, W. 1987 Gyrokinetic particle simulation model. J. Comput. Phys. 72, 243.CrossRefGoogle Scholar
Mishchenko, A., Plunk, G. G. & Helander, P. 2018a Electrostatic stability of electron–positron plasmas in dipole geometry. J. Plasma Phys. 84, 905840201.Google Scholar
Mishchenko, A., Zocco, A., Helander, P. & Könies, A. 2018b Gyrokinetic stability of electron–positron–ion plasmas. J. Plasma Phys. 84, 905840116.Google Scholar
Novikau, I., Biancalani, A., Bottino, A., Conway, G. D., Gürcan, Ö. D., Manz, P., Morel, P., Poli, E. & Di Siena, A. 2017 Linear gyrokinetic investigation of the geodesic acoustic modes in realistic tokamak configurations. Phys. Plasmas 24, 122117.CrossRefGoogle Scholar
Pedersen, T. S., Boozer, A. H., Dorland, W., Kremer, J. P. & Schmitt, R. 2003 Prospects for the creation of positron–electron plasmas in a non-neutral stellarator. J. Phys. B 36, 10291039.Google Scholar
Pedersen, T. S., Danielson, J. R., Hugenschmidt, C., Marx, G., Sarasola, X., Schauer, F., Schweikhard, L., Surko, C. M. & Winkler, E. 2012 Plans for the creation and studies of electron–positron plasmas in a stellarator. New J. Phys. 14, 035010.Google Scholar
Rosenbluth, M. & Hinton, F. 1998 Poloidal flow driven by ion-temperature-gradient turbulence in tokamaks. Phys. Rev. Lett. 80, 724.CrossRefGoogle Scholar
Rudakov, L. I. & Sagdeev, R. Z. 1962 Microscopic instabilities of spatially inhomogeneous plasma in a magnetic field. Nucl. Fusion Suppl. 2, 481.Google Scholar
Saitoh, H., Stanja, J., Stenson, E. V., Hergenhahn, U., Niemann, H., Pedersen, T. S., Stoneking, M. R., Piochacz, C. & Hugenschmidt, C. 2015 Efficient injection of an intense positron beam into a dipole magnetic field. New J. Phys. 17, 103038.CrossRefGoogle Scholar
Stenson, E. V. et al. 2018 Lossless positron injection into a magnetic dipole trap. Phys. Rev. Lett. 121, 235005.CrossRefGoogle ScholarPubMed
Stoneking, M. R. et al. 2018 Toward a compact levitated superconducting dipole for positron-electron plasma confinement. AIP Conf. Proc. 1928, 020015.CrossRefGoogle Scholar
Tronko, N., Bottino, A. & Sonnendrücker, E. 2016 Second order gyrokinetic theory for particle-in-cell codes. Phys. Plasmas 23, 082505.CrossRefGoogle Scholar
Tsytovich, V. & Wharton, C. B. 1978 Laboratory electron–positron plasma – a new research object. Comments Plasma Phys. Control. Fusion 4, 91100.Google Scholar
Winsor, N., Johnson, J. L. & Dawson, J. M. 1968 Geodesic acoustic waves in hydromagnetic systems. Phys. Fluids 11, 2448.CrossRefGoogle Scholar
Zhang, H. S. & Lin, Z. 2010 Trapped electron damping of geodesic acoustic mode. Phys. Plasmas 17, 072502.CrossRefGoogle Scholar
Zonca, F. & Chen, L. 2008 Radial structures and nonlinear excitation of geodesic acoustic modes. Europhys. Lett. 83, 35001.CrossRefGoogle Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 3
Total number of PDF views: 96 *
View data table for this chart

* Views captured on Cambridge Core between 21st May 2019 - 24th November 2020. This data will be updated every 24 hours.

Hostname: page-component-57c975d4c7-9dlk2 Total loading time: 2.283 Render date: 2020-11-24T18:19:03.671Z Query parameters: { "hasAccess": "0", "openAccess": "0", "isLogged": "0", "lang": "en" } Feature Flags last update: Tue Nov 24 2020 17:57:22 GMT+0000 (Coordinated Universal Time) Feature Flags: { "metrics": true, "metricsAbstractViews": false, "peerReview": true, "crossMark": true, "comments": false, "relatedCommentaries": false, "subject": true, "clr": false, "languageSwitch": false }

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Linear gyrokinetic studies with ORB5 en route to pair plasmas
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Linear gyrokinetic studies with ORB5 en route to pair plasmas
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Linear gyrokinetic studies with ORB5 en route to pair plasmas
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *