Skip to main content Accessibility help
×
Home
Hostname: page-component-78dcdb465f-fqvcn Total loading time: 5.209 Render date: 2021-04-17T13:13:11.194Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Hot spot generated by non-thermal electrons just before disruption in HT-7 tokamak

Published online by Cambridge University Press:  28 May 2010

ERZHONG LI
Affiliation:
Institute of Plasma Physics, Chinese Academy of Science, Hefei, 230031, PR China (rzhonglee@ipp.ac.cn)
LIQUN HU
Affiliation:
Institute of Plasma Physics, Chinese Academy of Science, Hefei, 230031, PR China (rzhonglee@ipp.ac.cn)
KAIYUN CHEN
Affiliation:
Institute of Plasma Physics, Chinese Academy of Science, Hefei, 230031, PR China (rzhonglee@ipp.ac.cn)
BILI LING
Affiliation:
Institute of Plasma Physics, Chinese Academy of Science, Hefei, 230031, PR China (rzhonglee@ipp.ac.cn)
YONG LIU
Affiliation:
Institute of Plasma Physics, Chinese Academy of Science, Hefei, 230031, PR China (rzhonglee@ipp.ac.cn)
HONGWEI LU
Affiliation:
Institute of Plasma Physics, Chinese Academy of Science, Hefei, 230031, PR China (rzhonglee@ipp.ac.cn)
SHIYAO LIN
Affiliation:
Institute of Plasma Physics, Chinese Academy of Science, Hefei, 230031, PR China (rzhonglee@ipp.ac.cn)
BIAO SHEN
Affiliation:
Institute of Plasma Physics, Chinese Academy of Science, Hefei, 230031, PR China (rzhonglee@ipp.ac.cn)
XIANG GAO
Affiliation:
Institute of Plasma Physics, Chinese Academy of Science, Hefei, 230031, PR China (rzhonglee@ipp.ac.cn)
Corresponding
E-mail address:

Abstract

Intense non-thermal radiation spikes were observed prior to energy quench in HT-7 tokamak. The dynamic properties of non-thermal electrons have been analyzed. Observation manifests that some non-thermal electrons are confined in the vicinity of q = 1 magnetic surface which results in hot spot phenomenon just before disruption.

Type
Papers
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below.

References

[1]Helander, R., Eriksson, L. G. and Andersson, F. 2000 Phys. Plasmas 7, 4106.CrossRefGoogle Scholar
[2]Jaspers, R., Pankratov, I. M., Finken, K. H. and Entrop, I. 1998 Proc. 25th EPS Conf. on Contr. Fusion and Plasma Physics (Praha, 1998). ECA 22C, 683.Google Scholar
[3]Martin-Solis, J. R., Sanchez, R. and Esposito, B. 2002 Phys. Plasmas 9, 1667.CrossRefGoogle Scholar
[4]Putvinski, S., Barabaschi, P., Fujisawa, N., Putvinskaya, N., Rosenbluth, M. N. and Wesley, J. 1997 Plasma Phys. Control. Fusion 39, B157.CrossRefGoogle Scholar
[5]Jaspers, R., Lopes Cardozo, N. J. and Schuller, F. C. 1996 Nucl. Fusion 36, 367.CrossRefGoogle Scholar
[6]Hender, T. C., Abdullaev, S. S., Jakubowski, M., Jaspers, R., Lehnen, M. and Zimmermann, O. 2007 Nucl. Fusion 47, S128.CrossRefGoogle Scholar
[7]Finken, K. H., Abdullaev, S. S., Jakubowski, M. W., Jaspers, R., Lehnen, M., Schlickeiser, R., Spatschek, K. H., Wingen, A., Wolf, R. and TEXTOR Team 2007 Nucl. Fusion 47, 91.CrossRefGoogle Scholar
[8]Lehnen, M., Bozhenkov, S. A., Abdullaev, S. S. and TEXTOR Team 2008 Phys. Rev. Lett. 100, 255003.CrossRefGoogle Scholar
[9]Yoshino, R. 1999 Nucl. Fusion 39, 151.CrossRefGoogle Scholar
[10]Savrukhin, P. V. 2002 Phys. Plasmas 9, 3421.CrossRefGoogle Scholar
[11]Savrukhin, P. V. 2001 Phys. Rev. Lett. 86, 3036.CrossRefGoogle Scholar
[12]Wan, B. 2003 J. Nucl. Mater. 313–316, 127.CrossRefGoogle Scholar
[13]Sun, Y., Wan, B. N., Hu, L. Q., Chen, K. Y., Shen, B. and Mao, J. S. 2009 Plasma Phys. Control. Fusion 51, 065001.CrossRefGoogle Scholar
[14]Chen, Z. Y., Wan, B. N., Lin, S. Y., Shi, Y. J., Hu, L. Q., Younis, J., Gong, X. Z., Shan, J. F., Liu, F. K., Ding, B. J., Gao, X. and HT-7 Team 2006 Plasma Phys. Control. Fusion 48, 1489.CrossRefGoogle Scholar
[15]Chen, Z. Y., Wan, B. N., Ling, B. L., Gao, X., Ti, A., Du, Q., Sajjad, S., Lin, S. Y., Shi, Y. J. and the HT-7 Team 2008 Plasma Phys. Control. Fusion 50, 015001.CrossRefGoogle Scholar
[16]Ma, T. P., Ruan, H. L., Hu, L. Q., Wan, B. N., Gao, X., Zhen, X. J., Zhou, L. W., Sun, Y. W., Gao, W., Chen, Z. Y., Lin, S. Y. and Kong, W. 2006 Chin. Phys. 15, 0593.Google Scholar
[17]Ma, T. P., Hu, L. Q., Wan, B. N., Ruan, H. L., Gao, X., Zhen, X. J., Zhou, L. W., Sun, Y. W., Chen, Z. Y., Lin, S. Y. and Kong, W. 2005 Chin. Phys. 14, 2061.Google Scholar
[18]Tokuda, S. and Yoshino, R. 1999 Nucl. Fusion 39, 1123.CrossRefGoogle Scholar
[19]Yoshino, R., Tokuda, S. and Kawano, Y. 2000 Nucl. Fusion 40, 1293.CrossRefGoogle Scholar
[20]Jaspers, R., Lopes Cardozo, N. J., Finken, K. H., Schokker, B. C., Mank, G., Fuchs, G. and Schuller, F. C. 1994 Phys. Rev. Lett. 72, 4093.CrossRefGoogle Scholar
[21]Savrukhin, P. V. 2006 Plasma Phys. Control. Fusion 48, B201.CrossRefGoogle Scholar
[22]Gorelenkov, N. N. 1997 Nucl. Fusion 37, 1053.CrossRefGoogle Scholar
[23]Knoepfel, 1979 Nucl. Fusion 19, 785.CrossRefGoogle Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 18 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 17th April 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Hot spot generated by non-thermal electrons just before disruption in HT-7 tokamak
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Hot spot generated by non-thermal electrons just before disruption in HT-7 tokamak
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Hot spot generated by non-thermal electrons just before disruption in HT-7 tokamak
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *