Skip to main content Accessibility help

Taphonomy of the Ediacaran Fossil Pteridinium Simplex Preserved Three-Dimensionally in Mass Flow Deposits, Nama Group, Namibia

  • Mike Meyer (a1) (a2), David Elliott (a3), James D. Schiffbauer (a4), Michael Hall (a3), Karl H. Hoffman (a5), Gabi Schneider (a5), Patricia Vickers-Rich (a3) and Shuhai Xiao (a1)...


Ediacara-type fossils are found in a diverse array of preservational styles, implying that multiple taphonomic mechanisms might have been responsible for their preservational expression. For many Ediacara fossils, the “death mask” model has been invoked as the primary taphonomic pathway. The key to this preservational regime is the replication or sealing of sediments around the degrading organisms by microbially induced precipitation of authigenic pyrite, leading toward fossil preservation along bedding planes. Nama-style preservation, on the other hand, captures Ediacaran organisms as molds and three-dimensional casts within coarse-grained mass flow beds, and has been previously regarded as showing little or no evidence of a microbial preservational influence. To further understand these two seemingly distinct taphonomic pathways, we investigated the three-dimensionally preserved Ediacaran fossil Pteridinium simplex from mass flow deposits of the upper Kliphoek Member, Dabis Formation, Kuibis Subgroup, southern Namibia. Our analysis, using a combination of petrographic and micro-analytical methods, shows that Pteridinium simplex vanes are replicated with minor pyrite, but are most often represented by open voids that can be filled with secondary carbonate material; clay minerals are also found in association with the vanes, but their origin remains unresolved. The scarcity of pyrite and the development of voids are likely related to oxidative weathering and it is possible that microbial activities and authigenic pyrite may have contributed to the preservation of Pteridinium simplex; however, any microbes growing on P. simplex vanes within mass flow deposits were unlikely to have formed thick mats as envisioned in the death mask model. Differential weathering of replicating minerals and precipitation of secondary minerals greatly facilitate fossil collection and morphological characterization by allowing Pteridinium simplex vanes to be parted from the massive hosting sandstone.



Hide All
Anderson, E., Schiffbauer, J. D., and Xiao, S. 2011. Taphonomic study of organic-walled microfossils confirms the importance of clay minerals and pyrite in Burgess Shale-type preservation. Geology, 39:643646.
Awonusi, A., Morris, M. D., and Tecklenburg, M. M. J. 2007. Carbonate assignment and calibration in the Raman spectrum of apatite. Calcified Tissue International, 81:4652.
Butterfield, N. J. 1990. Organic preservation of non-mineralizing organisms and the taphonomy of the Burgess Shale. Paleobiology, 16:272286.
Butterfield, N. J. 1995. Secular distribution of Burgess Shale-type preservation. Lethaia, 28:113.
Butterfield, N. J., Balthasar, U., and Wilson, L. A. 2007. Fossil diagenesis in the Burgess Shale. Palaeontology, 50:537543.
Cai, Y., Hua, H., Xiao, S., Schiffbauer, J. D., and Li, P. 2010. Biostratinomy of the late Ediacaran pyritized Gaojiashan Lagerstätte from southern Shaanxi, south China: Importance of event deposits. Palaios, 25:487506.
Cai, Y., Schiffbauer, J. D., Hua, H., and Xiao, S. 2012. Preservational modes in the Ediacaran Gaojiashan Lagerstätte: Pyritization, aluminosilicification, and carbonaceous compression. Palaeogeography, Palaeoclimatology, Palaeoecology, 326–28:109117.
Crimes, T. P. and Fedonkin, M. A. 1996. Biotic changes in platform communities across the Precambrian–Phanerozoic boundary. Rivista Italiana di Paleontologia e Stratigrafia, 102:317332.
Elliott, D. A., Vickers-Rich, P., Trusler, P., and Hall, M. 2011. New evidence on the taphonomic context of the Ediacaran Pteridinium . Acta Palaeontologica Polonica, 56:641650.
Farmer, J., Vidal, G., Moczydlowska, M., Strauss, H., Ahlberg, P., and Siedlecka, A. 1992. Ediacaran fossils from the Innerelv Member (late Proterozoic) of the Tanafjorden area, northeastern Finnmark. Geological Magazine, 129:181195.
Fedonkin, M. A., Gehling, J. G., Grey, K., Narbonne, G. M., and Vickers-Rich, P. 2007. The Rise of Animals: Evolution and Diversification of the Kingdom Animalia. Johns Hopkins University Press, Baltimore, 326 p.
Gaines, R. R., Briggs, D. E. G., and Zhao, Y. L. 2008. Cambrian Burgess Shale-type deposits share a common mode of fossilization. Geology, 36:755758.
Gaines, R. R., Kennedy, M. J., and Droser, M. L. 2005. A new hypothesis for organic preservation of Burgess Shale taxa in the middle Cambrian Wheeler Formation, House Range, Utah. Palaeogeography, Palaeoclimatology, Palaeoecology, 220:193205.
Gehling, J. G. 1999. Microbial mats in terminal Proterozoic siliciclastics: Ediacaran death masks. Palaios, 14:4057.
Gehling, J. G. and Droser, M. L. 2009. Textured organic surfaces associated with the Ediacara biota in South Australia. Earth Science Reviews, 96:196206.
Gehling, J. G. and Droser, M. L. 2013. How well do fossil assemblages of the Ediacara Biota tell time? Geology, 41:447450.
Gehling, J. G., Narbonne, G. M., and Anderson, M. M. 2000. The first named Ediacaran body fossil, Aspidella terranovica . Palaeontology, 43:427456.
Germs, G. J. B. 1973. The Nama Group in South-West Africa and its relationship to the pan-African geosyncline. The Journal of Geology, 82:301317.
Gibson, G. G., Teeter, S. A., and Fedonkin, M. A. 1984. Ediacarian fossils from the Carolina slate belt, Stanly County, North Carolina. Geology, 12:387390.
Glaessner, M. F. W. and Wade, M. 1966. The late Precambrian fossils from Ediacara, South Australia. Palaeontology, 9:599628.
Grazhdankin, D. and Seilacher, A. 2002. Underground Vendobionta from Namibia. Palaeontology, 45:5778.
Gresse, P. G. and Germs, G. J. B. 1993. The Nama foreland basin: Sedimentation, major unconformity bounded sequences and multisided active margin advance. Precambrian Research, 63:247272.
Grotzinger, J. P., Bowring, S. A., Saylor, B. Z., and Kaufman, A. J. 1995. Biostratigraphic and geochronologic constraints on early animal evolution. Science, 270:598604.
Gürich, G. 1930. Die bislang ältesten Spuren von Organismen in Südafrika. International Geological Congress. South Africa, 1929 (XV), 2:670680.
Hall, M., Kaufman, A. J., Vickers-Rich, P., Ivanstov, A. Y., Trusler, P., Linnemann, U., Hofmann, M., Elliott, D. A., Cui, H., Fedonkin, M. A., Hoffman, K., Wilson, S. A., Schneider, G., and Smith, J. 2013. Stratigraphy, palaeontology and geochemistry of the late Neoproterozoic Aar Member, southwest Namibia: Reflecting environmental controls on Ediacara fossil preservation during the terminal Proterozoic in African Gondwana. Precambrian Research, 238:214232.
Jenkins, R. J. F. 1992. Functional and ecological aspects of Ediacaran assemblages, p. 131176. In Lipps, J. H. and Signor, P. W. (eds.), Origin and Early Evolution of Metazoa. Plenum Press, New York.
Jenkins, R. J. F., Ford, C. H., and Gehling, J. G. 1983. The Ediacara member of the Rawnsley quartzite: The context of the Ediacara assemblage (late Precambrian, Flinders Ranges). Journal of the Geological Society of Australia 30.
Keller, B. M., Menner, V. V., Stepanov, V. A., and Chumakov, N. M. 1974. New findings of Metazoan in the Vendian of the Russian Platform. Izvestiya Akademii Nauk SSSR, Seriya Geologicheskaya, 12:130134.
Laflamme, M., Darroch, S. A. F., Tweedt, S. M., Peterson, K. J., and Erwin, D. H. 2013. The end of the Ediacara biota: Extinction, biotic replacement, or Cheshire Cat? Gondwana Research, 23:558573.
Laflamme, M., Schiffbauer, J. D., and Narbonne, G. M. 2011 a. Deep-water microbially induced sedimentary structures (MISS) in deep time: The Ediacaran fossil Ivesheadia , p. 111123. In Noffke, N. and Chafetz, H. S. (eds.), Microbial Mats in Siliciclastic Depositional Systems Through Time. Volume 101, SEPM Special Publications.
Laflamme, M., Schiffbauer, J. D., Narbonne, G. M., and Briggs, D. G. 2011 b. Microbial biofilms and the preservation of the Ediacara biota. Lethaia, 44:203213.
McKeown, D. A., Bell, M. I., and Etz, E. S. 1999. Vibrational analysis of the dioctahedral mica: 2M1 muscovite. American Mineralogist, 84:10411048.
Meyer, M., Schiffbauer, J. D., Xiao, S., Cai, Y., and Hua, H. 2012. Taphonomy of the upper Ediacaran enigmatic ribbonlike fossil Shaanxilithes . Palaios, 27:354372.
Narbonne, G. M. 2005. The Ediacara Biota: Neoproterozoic origin of animals and their ecosystems. Annual Review of Earth and Planetary Sciences, 33:421442.
Narbonne, G. M. and Hofmann, H. J. 1987. Ediacaran biota of the Wernecke Mountains, Yukon, Canada. Palaeontology, 30:647676.
Nicola, J. H., Scott, J. F., Couto, R. M., and Correa, M. M. 1976. Raman spectra of dolomite [CaMg(CO3)2]. Physical Review B, 14:46764678.
Orr, P. J., Briggs, D. E. G., and Kearns, S. L. 1998. Cambrian Burgess Shale animals replicated in clay minerals. Science, 281:11731175.
Page, A., Gabbott, S. E., Wilby, P. R., and Zalasiewicz, J. A. 2008. Ubiquitous Burgess Shale-style “clay templates” in low-grade metamorphic mudrocks. Geology, 36:855858.
Petrovich, R. 2001. Mechanisms of fossilization of the soft-bodied and lightly armored faunas of the Burgess Shale and of some other classical localities. American Journal of Science, 301:683726.
Saylor, B. Z., Kaufman, A. J., Grotzinger, J. P., and Urban, F. 1995. Sequence stratigraphy and sedimentology of the Neoproterozoic Kuibis and Schwarzrand Subgroups (Nama Group), southwestern Namibia. Precambrian Research, 73:153171.
Schiffbauer, J. D., Xiao, S., Sen Sharma, K., and Wang, G. 2012. The origin of intracellular structures in Ediacaran metazoan embryos. Geology, 40:223226.
Schmitz, M. D. 2012. Appendix 2—Radiometric ages used in GTS2012, p. 10451082. In Gradstein, F., Ogg, J., Schmitz, M. D., and Ogg, G. (eds.), The Geologic Time Scale 2012. Elsevier, Boston.
Seilacher, A. 1992. Vendobionta and Psammocorallia: Lost constructions of Precambrian evolution. Journal of the Geological Society of London, 149:607613.
St. Jean, J. 1973. A new Cambrian trilobite from the Piedmont of North Carolina. American Journal of Science, 273–A:196216.
Vickers-Rich, P. 2007. The Nama fauna of southern Africa, p. 6988. The Rise of Animals: Evolution and Diversification of the Kingdom Animalia. Johns Hopkins University Press.
Vickers-Rich, P., Ivantsov, A. Y., Trusler, P. W., Narbonne, G. M., Hall, M., Wilson, S. A., Greentree, C., Fedonkin, M. A., Elliott, D. A., Hoffmann, K. H., and Schneider, G. I. C. 2013. Reconstructing Rangea: New discoveries from the Ediacaran of southern Namibia. Journal of Paleontology, 87:115.
Wada, N. and Kamitakahara, W. A. 1991. Inelastic neutron- and Raman-scattering studies of muscovite and vermiculite layered silicates. Physical Review B, 45:23912397.
Wang, A., Freeman, J., and Kuebler, K. E. 2002. Raman Spectroscopic Characterization of Phyllosilicates. Lunar and Planetary Science, XXXIII:13741375.
Wopenka, B. and Pasteris, J. D. 1993. Structural characterization of kerogens to granulite-facies graphite: Applicability of Raman microprobe spectroscopy. American Mineralogists, 78:533557.
Xiao, S. and Knoll, A. H. 2000. Phosphatized animal embryos from the Neoproterozoic Doushantuo Formation at Weng'an, Guizhou, South China. Journal of Paleontology, 74:767788.
Xiao, S. and Laflamme, M. 2009. On the eve of animal radiation: Phylogeny, ecology and evolution of the Ediacara biota. Trends in Ecology and Evolution, 24:3140.
Xiao, S. and Schiffbauer, J.D. 2009. Fossil preservation through phosphatization and its astrobiological implications, p. 89118. In Seckbach, J. and Walsh, M. (eds.), From Fossils to Astrobiology. Springer, Heidelberg.
Xiao, S., Schiffbauer, J. D., McFadden, K. A., and Hunter, J. 2010. Petrographic and SIMS pyrite sulfur isotope analyses of Ediacaran chert nodules: Implications for microbial processes in pyrite rim formation, silicification, and exceptional fossil preservation. Earth and Planetary Science Letters, 297:481495.
Xiao, S., Yuan, X., Steiner, M., and Knoll, A. H. 2002. Macroscopic carbonaceous compressions in a terminal Proterozoic shale: A systematic reassessment of the Miaohe biota, South China. Journal of Paleontology, 76:347376.
Yuan, X., Chen, Z., Xiao, S., Zhou, C., and Hua, H. 2011. An early Ediacaran assemblage of macroscopic and morphologically differentiated eukaryotes. Nature, 470:390393.

Taphonomy of the Ediacaran Fossil Pteridinium Simplex Preserved Three-Dimensionally in Mass Flow Deposits, Nama Group, Namibia

  • Mike Meyer (a1) (a2), David Elliott (a3), James D. Schiffbauer (a4), Michael Hall (a3), Karl H. Hoffman (a5), Gabi Schneider (a5), Patricia Vickers-Rich (a3) and Shuhai Xiao (a1)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed