Hostname: page-component-7c8c6479df-27gpq Total loading time: 0 Render date: 2024-03-29T01:05:11.637Z Has data issue: false hasContentIssue false

Syzygial brachials from the upper Muschelkalk (Middle Triassic, Ladinian) of Poland and their implication for an early origin of comatulid crinoids

Published online by Cambridge University Press:  20 May 2016

Mariusz A. Salamon
Affiliation:
University of Silesia, Faculty of Earth Sciences, Bldzińska Street 60, Pl-41-200 Sosnowiec, Poland,
Michat Zatoń
Affiliation:
University of Silesia, Faculty of Earth Sciences, Bldzińska Street 60, Pl-41-200 Sosnowiec, Poland,
Przemysław Gorzelak
Affiliation:
University of Silesia, Faculty of Earth Sciences, Bldzińska Street 60, Pl-41-200 Sosnowiec, Poland,

Extract

According to Ubaghs (1978), syzygies are brachial articulations in which radiating ridges and furrows on the two joint faces oppose each other rather than interlock as in symplexies. Cryptosyzygies differ from syzygies by having very short ridges that may be replaced by rows of tubercles or granules, with a tendency toward irregular arrangement and disappearance. Among Triassic crinoids, only representatives of the orders Isocrinida Sieverts-Doreck, 1952 and Comatulida Clark, 1908 had cryptosyzygial or syzygial brachial articulation, respectively. According to Rasmussen (1978), among Isocrinidae the articulations of primibrachial 1 and 2 and secundibrachial 1 and 2 were cryptosyzygial or synarthrial (but see also comments in Simms, 1988a). Among Comatulida, syzygial articulations generally occur between brachials 3 and 4 and in more distal arm parts.

Type
Paleontological Notes
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Clark, A. H. 1908. New genera of unstalked crinoids. Proceedings of the Biological Society, Washington, 21:125136.Google Scholar
Hagdorn, H. and Campbell, H. J. 1993. Paracomatula triadica sp. nov.— an early comatulid crinoid from the Otapirian (Late Triassic) of New Caledonia. Alcheringa, 17:117.CrossRefGoogle Scholar
Hess, H. 1951. Ein neuer Crinoide aus dem mittleren Dogger der Nordschweiz (Paracomatula helvetica n. gen. n. sp.). Eclogae geologicae Helvetiae, 43:208216.Google Scholar
Hess, H. 1975. Die fossilen Echinodermen des Schweizer Juras. Natural History Museum, Basel, 130 p.Google Scholar
Hess, H. 2006. Crinoids (Echinodermata) from the Lower Jurassic (Upper Pliensbachian) of Arzo, southern Switzerland. Schweizerische Paläontologische Abhandlungen, 126:1143.Google Scholar
Jaekel, O. 1918. Phylogenie und System der Pelmatozoen. Paläontologische Zeitschrift, 3(1): 1128.CrossRefGoogle Scholar
Jagt, J. W. M. 1999. Late Cretaceous-Early Palaeogene echinoderms and the K/T boundary in the southeast Netherlands and northeast Belgium—Pt. 2, Crinoids. Scripta Geologica, 116:59255.Google Scholar
Klikushin, V. G. 1987. Thiolliericrinid crinoids from the Lower Cretaceous of Crimea. Geobios, 20:625665.Google Scholar
Marynowski, L., Salamon, M. A., and Narkiewicz, M. 2002. Thermal maturity and depositional environments of organic matter in the post-Variscan succession of the Holy Cross Mountains. Geological Quarterly, 46(1): 2536.Google Scholar
Miller, J. S. 1821. A natural history of the Crinoidea or lily-shaped animals, wtih observation on the genera Asteria, Euryale, Comatula, and Marsupites. Bryan & Co., Bristol, 150 p.Google Scholar
Niedzwiedzki, R., Salamon, M. A., and Boczarowski, A. 2001. New data on the ceratites from the Upper Muschelkalk in Holy Cross Mountains (SE Poland). Freiberger Forschungshefte Paläontologie, Stratigraphie, Fazies, C492(9):8598.Google Scholar
Oji, T. and Okamoto, T. 1994. Arm autotomy and arm branching pattern as anti-predatory adaptations in stalked and stalkless crinoids. Paleobiology, 20(1):2739.Google Scholar
Picard, K. 1883. Über eine neue Crinoiden-Art aus dem Muschelkalk der Hainleite bei Sonderhausen. Zeitschrift für Deutsche Geologische Gesellschaft, 35:199202.Google Scholar
Rasmussen, H. W. 1978. Articulata, p. T813T928. In Moore, R. C. and Teichert, C. (eds.), Treatise on Invertebrate Paleontology, Pt. T, Echinodermata 2, Crinoidea 3. Geological Society of America and University of Kansas, Lawrence.Google Scholar
Salamon, M. A. 2003. The Middle Triassic crinoids (Crinoidea) of the Holy Cross Mountains. Unpublished Ph.D. dissertation, University of Silesia at Sosnowiec, 114 p.Google Scholar
Salamon, M. A. 2005a. Encrinus cf. liliiformis Lamarck, 1801, the youngest crinoid from the Polish Muschelkalk (Middle Triassic). Geología, 31(2): 243252.Google Scholar
Salamon, M. A. 2005b. Holocrinid columnals from the Upper Muschelkalk of the Holy Cross Mountains (eastern part of the Germanic Basin). Geological Quarterly, 49(1): 105107.Google Scholar
Sieverts-Doreck, H. 1953. Articulata, p. 658773. In Ubaghs, G. (ed.), Classe de Crinoides. In Piveteau, J. (ed.), Traité de Paléontologie, 3. Paris.Google Scholar
Simms, M. J. 1988a. The phylogeny of post-Palaeozoic crinoids, p. 269284. In Paul, C. R. C. and Smith, A. B. (eds.), Echinoderm Phylogeny and Evolutionary Biology. Oxford University Press, Oxford.Google Scholar
Simms, M. J. 1988b. The role of heterochrony in the evolution of post-Palaeozoic crinoids, p. 97102. In Burke, R. D., Mlandenov, P. V., Lambert, P., and Parsley, R. L. (eds.), Echinoderm Biology. A. A. Balkema, Rotterdam.Google Scholar
Simms, M. J. 1994. The crinoid fauna of the Chambara Formation, Pucara Group, central Peru. Palaeontographica, A233:169175.Google Scholar
Trammer, J. 1975. Stratigraphy and facies development of the Muschelkalk in the southwestern Holy Cross Mountains. Acta Geologica Polonica, 25(2): 179216.Google Scholar
Ubaghs, G. 1978. Skeletal morphology of fossil crinoids, p. T58T216. In Moore, R. C. and Teichert, C. (eds.), Treatise on Invertebrate Paleontology, Pt. T, Echinodermata 2, Crinoidea 1. Geological Society of America and University of Kansas, Lawrence.Google Scholar
Wachsmuth, C. and Springer, F. 1886. Revision of the Palaeocrinoidea, Pt. 3, sec. 2. Discussion of the classification and relations of the brachiate crinoids, and conclusion of the generic description. Philadelphia Academy of Natural Sciences Proceedings, 64-226 (140-302) + index pages 303334.Google Scholar
Walker, S. E. and Brett, C. E. 2002. Post-Paleozoic patterns in marine predation: Was there a Mesozoic and Cenozoic marine predatory revolution?, p. 119193. In Kowalewski, M. and Kelley, P. H. (eds.), The Fossil Record of Predation. Paleontological Society Papers, 8, 398 p.Google Scholar