Hostname: page-component-7c8c6479df-hgkh8 Total loading time: 0 Render date: 2024-03-29T02:11:15.432Z Has data issue: false hasContentIssue false

Small shelly fossils from Antarctica: an Early Cambrian faunal connection with Australia

Published online by Cambridge University Press:  14 July 2015

K. R. Evans
Affiliation:
Department of Geology, University of Kansas, Lawrence 66045
A. J. Rowell
Affiliation:
Department of Geology, University of Kansas, Lawrence 66045

Abstract

Kennardiids, members of a family of organisms that bore phosphatic sclerites, are present in Antarctica; previously, they had been found only in Australia. This new occurrence reinforces the concept of a faunal province shared between the continents during Early Cambrian time. Although the two known genera of kennardiids, Dailyatia Bischoff and Kennardia Laurie occur in Antarctica and Australia, no species are common to both continents.

Dailyatia is interpreted as having had tightly fitting sclerites that armored a bilaterally symmetrical, bipolar body; two alternative reconstructions are presented. Taxa include two new species, Dailyatia braddocki and Dailyatia odyssei, and two unnamed species of Kennardia.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bengtson, S. 1977. Aspects of problematic fossils in the early Paleozoic. Acta Universitatis Upsaliensis, Abstracts of Uppsala Dissertations from the Faculty of Science, 415:171.Google Scholar
Bengtson, S. 1985. Taxonomy of disarticulated fossils. Journal of Paleontology, 59:13501358.Google Scholar
Bengtson, S. 1986. A new Mongolian species of the Lower Cambrian genus Camenella and the problems of scleritome-based taxonomy of the Tommotiidae. Paläontologische Zeitschrift, 60:4555.Google Scholar
Bengtson, S., and Conway Morris, S. 1984. Comparative study of Lower Cambrian Halkieria and Middle Cambrian Wiwaxia. Lethaia, 17:305329.Google Scholar
Bergström, J. 1989. The origin of animal phyla and the new phylum Procoelomata. Lethaia, 22:259269.CrossRefGoogle Scholar
Bischoff, G. C. O. 1976. Dailyatia, a new genus of the Tommotiidae from Cambrian strata of SE. Australia (Crustacea, Cirripedia). Senckenbergiana Lethaea, 57:133.Google Scholar
Conway Morris, S. 1982. Wiwaxia corrugata (Matthew), a problematic Middle Cambrian animal from the Burgess Shale of British Columbia. Third North American Paleontological Convention, Proceedings, 1 David, T. W. E., and Priestley, R. E. 1914. Glaciology, physiography, stratigraphy, and tectonic geology of south Victoria Land, with short notes on palaeontology by T. Griffith Taylor. British Antarctic Expedition 1907-09, Reports on the Scientific Investigations, Geology, 1:1319.Google Scholar
Debrenne, F., and Kruse, P. D. 1986. Shackleton Limestone archaeocyaths. Alcheringa, 10:235278.CrossRefGoogle Scholar
Dzik, J. 1986. Turrilepadida and other machaeridia, p. 116134. In Hoffman, A. and Nitecki, M. H. (eds.), Problematic Fossil Taxa. Oxford Monographs on Geology and Geophysics, 5.Google Scholar
Evans, K. R. 1989. Provincialism and evolutionary significance of some fauna from the Shackleton Limestone, Antarctica. Unpubl. , , 94 p.Google Scholar
Gazdzicki, A., and Wrona, R. 1986. Polskie badania paleontologiczne w Antarktyce zachodniej (1986) [Polish paleontological investigations in western Antarctica (1986)]. Przeglad Geologiczny, 11(403):609615.Google Scholar
Hill, D. 1964a. Archaeocyatha from loose material at Plunkett Point at the head of Beardmore Glacier, p. 609622. In Adie, R. J. (ed.), Antarctic Geology. North Holland Press, New Amsterdam.Google Scholar
Hill, D. 1964b. Archaeocyatha from the Shackleton Limestone of the Ross system, Nimrod Glacier area, Antarctica. Transactions of the Royal Society of New Zealand, 2(9):137146.Google Scholar
Hill, D. 1965. Archaeocyatha from Antarctica and a review of the phylum. Scientific Report of the Transantarctic Expedition, 10, Geology 3, 151 p.Google Scholar
Jell, P. A. 1979. Plumulites and the machaeridian problem. Alcheringa, 3:253259.Google Scholar
Konyuskov, K. N., and Shulyatin, O. G. 1980. Ob arkheotsiatakh Antarktidy ikh sopostavlenii s arkheotsiatami Sibiri [On the archaeocyaths of Antarctica and their comparison with the archaeocyaths of Siberia], p. 143150. In Zhuravleva, I. T. (ed.), Kembriya Altae-Sayanskoy skladchatoy oblasti. Nauka, Moscow.Google Scholar
Laird, M. G. 1981. Lower Paleozoic rocks of Antarctica, p. 257314. In Holland, C. H. (ed.), Lower Paleozoic of the Middle East, Eastern and Southern Africa, and Antarctica. John Wiley and Sons Ltd., New York.Google Scholar
Laird, M. G., and Waterhouse, J. B. 1962. Archaeocyathine limestones of Antarctica. Nature, 194:861.Google Scholar
Landing, E. 1984. Skeleton of lapworthellids and the suprageneric classification of tommotiids (Early and Middle Cambrian phosphatic problematica). Journal of Paleontology, 58:13801398.Google Scholar
Laurie, J. R. 1986. Phosphatic fauna of the Early Cambrian Todd River Dolomite, Amadeus Basin, central Australia. Alcheringa, 10:431454.Google Scholar
Missarzhevskii, V. V. 1970. Pereimenovanie rannekembriiskovo roda fosfatnykh problematichnykh organizmov [Renaming of an Early Cambrian genus of phosphatic problematic organisms]. Paleontologicheskii Zhurnal 1970(4):100.Google Scholar
Palmer, A. R., and Gatehouse, C. G. 1972. Early and Middle Cambrian trilobites from Antarctica. U.S. Geological Survey Professional Paper 525-D, 37 p.Google Scholar
Yi, Qian, and Bengtson, S. 1989. Palaeontology and biostratigraphy of the Early Cambrian Meishucunian Stage in Yunnan Province, South China. Fossils and Strata, 24:1156.Google Scholar
Rees, M. N., Girty, G. H., Panttaja, S. K., and Braddock, P. 1988. Multiple phases of early Paleozoic deformation in the central Transantarctic Mountains. Antarctic Journal of the United States, 22(5):3335.Google Scholar
Rees, M. N., Pratt, B. D., and Rowell, A. J. 1989. Early Cambrian reefs, reef complexes, and associated lithofacies of the Shackleton Limestone, Transantarctic Mountains. Sedimentology, 36:341362.Google Scholar
Rees, M. N., and Rowell, A. J. In press. The pre-Devonian Palaeozoic clastics of the central Transantarctic Mountains: stratigraphy and depositional setting. In Thomson, M. R. A., Crame, J. W., and Thomson, J. W. (eds.), Geologic Evolution of Antarctica. Cambridge University Press, Cambridge.Google Scholar
Rowell, A. J., Evans, K. R., and Rees, M. N. 1989. Fauna of the Shackleton Limestone. Antarctic Journal of the United States, 1988 Review, 23(5):1314.Google Scholar
Rowell, A. J., and Rees, M. N. 1989. Early Palaeozoic history of the upper Beardmore Glacier area: implications for a major Antarctic structural boundary within the Transantarctic Mountains. Antarctic Science, 1:249260.Google Scholar
Rowell, A. J., Rees, M. N., Cooper, R. A., and Pratt, B. R. 1988. Early Paleozoic history of the central Transantarctic Mountains: evidence from the Holyoake Range, Antarctica. New Zealand Journal of Geology and Geophysics, 31:397404.Google Scholar
Solov'ev, I. A., and Grikurov, G. E. 1979. Novie dannie o rasprostranenii Kembriyskikh trilobitov v khrebtakh Ardzhentina i Sheklton [New data on the spread of Cambrian trilobites in the Argentina and Shackleton Mountains]. Antarktika, 18:5473.Google Scholar
Tate, R. 1892. The Cambrian fossils of South Australia. Transactions and Proceedings of the Royal Society of South Australia, 15:183189.Google Scholar
Wrona, R. 1987. Cambrian microfossil Hadimopanella Gedik from glacial erratics in West Antarctica. Palaeontological Polonica, 49:3748.Google Scholar
Yochelson, E. L. and Stump, E. 1977. Discovery of Early Cambrian fossils at Taylor Nunatak, Antarctica. Journal of Paleontology, 81:872875.Google Scholar