Skip to main content Accessibility help

Possible Animal Embryos from the Lower Cambrian (Stage 3) Shuijingtuo Formation, Hubei Province, South China

  • Jesse Broce (a1) (a2), James D. Schiffbauer (a2), Kriti Sen Sharma (a3), Ge Wang (a4) and Shuhai Xiao (a1)...


Fossilized animal embryos from lower Cambrian rocks provide a rare opportunity to study the ontogeny and developmental biology of early animals during the Cambrian explosion. This paper reports possible animal embryos, along with sponge spicules, hyolithelminths, and linguliformean brachiopods, from the upper Shuijingtuo Formation limestone (Cambrian Stage 3) at Changyang, Hubei Province, South China. This limestone unit has carbonate carbon and oxygen isotopic compositions similar to the upper Shuijingtuo limestone in the Yangtze Gorges area. The Shuijingtuo embryo fossils were exposed by physical fracturing, extracted with acetic acid maceration, and observed in thin sections. They were examined using light microscopy, scanning electron microscopy, energy dispersive X-ray spectroscopic elemental mapping, and micro-focus X-ray computed tomography. Most of them are poorly preserved, with a phosphatic envelope (interpreted as a chorion or fertilization envelope) surrounding sparitic calcite. In some specimens, a polygonal pattern is present on the surface, and these are interpreted as multicelled blastula embryos. In others, sets of grooves are present on the surface of a calcitic spheroidal structure, presumably representing the calcitic interior within the chorion; these grooves are superficially similar to annulations of Markuelia embryos, but their biological significance is unknown. Although their phylogenetic and taxonomic placement is largely unconstrained, the Shuijingtuo animal embryos indicate that chorions are taphonomically more robust and are selectively phosphatized. Embryos within the chorions, on the other hand, can be completely lost or entirely replaced by calcite, with only poorly preserved surficial structures. This style of preservation can be explained by a taphonomic switch from early phosphatization to later calcitization. This study illustrates the importance of combining physical fracturing with widely used acid digestion methods in the study of calcitized animal embryos, and it alludes to the possibility that many empty phosphatic vesicles recovered by acid digestion from Cambrian carbonates may be fossilized chorions.



Hide All
Bengtson, S., Conway Morris, S., Cooper, B. J., Jell, P. A., and Runnegar, B. N. 1990. Early Cambrian Fossils from South Australia. Memoir 9 of the Association of Australian Palaeontologists. Association of Australian Palaeontologists, Brisbane, 364 p.
Bengtson, S. and Yue, Z. 1997. Fossilized metazoan embryos from the earliest Cambrian. Science, 277:1,6451,648.
Briggs, D. E. G. and Wilby, P. R. 1996. The role of calcium carbonate-calcium phosphate switch in the mineralization of soft-bodied fossils. Journal of the Geological Society, London, 153:665668.
Dong, X.-P., Bengtson, S., Gostling, N. J., Cunningham, J. A., Harvey, T. H. P., Kouchinsky, A., Val'kov, A. K., Repetski, J. E., Stampanoni, M., Marone, F., and Donoghue, P. C. J. 2010. The anatomy, taphonomy, taxonomy and systematic affinity of Markuelia: early Cambrian to early Ordovician. Palaeontology, 53:1,2911,314.
Dong, X.-P, Cunningham, J. A., Bengtson, S., Thomas, C.-W., Liu, J., Stampanoni, M., and Donoghue, P. C. J. 2013. Embryos, polyps and medusae of the early Cambrian scyphozoan Olivooides . Proceedings of the Royal Society B, Biological Sciences, 280:18.
Dong, X.-P., Donoghue, P. C. J., Cheng, H., and Liu, J.-B. 2004. Fossil embryos from the middle and late Cambrian period of Hunan, South China. Nature, 427:237240.
Dong, X.-P. C. J. Donoghue, J. Cunningham, A., Liu, J.-B., and Cheng, H. 2005. The anatomy, affinity, and phylogenetic significance of Markuela. Evolution and Development, 7:468482.
Gostling, N. J., Dong, X., and Donoghue, P. C. J. 2009. Ontogeny and taphonomy: an experimental taphonomy study of the development of the brine shrimp Artemia salina. Palaeontology, 52:169186.
Haug, J. T., Maas, A., Waloszek, D., Donoghue, P. C. J., and Bengtson, S. 2009. A new species of Markuelia from the middle Cambrian of Australia. Association of Australasian Paleontologists Memoir, 37:303313.
Hippler, D., Hu, N., Steiner, M., Scholtz, G., and Franz, G. 2011. Experimental mineralization of crustacean eggs leads to surprising tissue conservation: new implications for the fossilization of Precambrian–Cambrian embryos. Biogeosciences Discussions, 8:12,05112,077.
Hubei Regional Geological Survey. 1970. 1:200,000 Geological Map, Changyang and Yichang Quadrangles. Unpublished Report of Regional Geologica Survey. (In Chinese)
Ishikawa, T., Ueno, Y., Shu, D., Li, Y., Han, J., Guo, J., Yoshida, N., Maruyama, S., and Komiya, T. 2013. The δ13C excursions spanning the Cambrian explosion to the Canglangpuian mass extinction in the Three Gorges area, South China. Gondwana Research, doi:10.1016/
Jeppsson, L., Fredholm, D., and Mattiasson, B. 1985. Acetic acid and phosphatic fossils: a warning. Journal of Paleontology, 59:952956.
Jiang, G., Wang, X., Shi, X., and Xiao, S. 2012. The origin of decoupled carbonate and organic carbon isotope signatures in the early Cambrian (ca. 542−520 Ma) Yangtze platform. Earth and Planetary Science Letters, 317318:96−110.
Li, G. and Holmer, L. E. 2004. Early Cambrian lingulate brachiopods from the Shaanxi Province, China. GFF, 126:193211.
Martin, D., Briggs, D. E. G., and Parkes, R. J. 2003. Experimental mineralization of invertebrate eggs and the preservation of Neoproterozoic embryos. Geology, 31:3942.
Martin, D., Briggs, D. E. G., and Parkes, R. J. 2005. Decay and mineralization of invertebrate eggs. Palaios, 20:562572.
Masters, B. A. and Scott, R. W. 1978. Microstructure, affinities and systematics of Cretaceous calcispheres. Micropaleontology, 24:210221.
Peng, S. and Babcock, L. E. 2001. Cambrian of the Hunan-Guizhou region, South China, p. 351. In Peng, S., Babcock, L. E., and Zhu, M. (eds.), Cambrian System of South China (Palaeoworld No. 13). University of Science and Technology of China Press, Hefei.
Peng, S., Babcock, L. E., and Cooper, R. A. 2012. The Cambrian Period, p. 437488. In Gradstein, F. M., Ogg, J. G., Schmitz, M., and Ogg, G. (eds.), Geological Time Scale 2012. Elsevier, Oxford.
Qian, Y. 1977. Hyolitha and some problematica from the lower Cambrian Meishucun Stage in central and southwestern China. Acta Palaeontologica Sinica, 16:255275.
Qian, Y., Chen, M., and Chen, Y. 1979. Hyolithids and other small shelly fossils from the lower Cambrian Huangshandong Formation in the eastern part of the Yangtze Gorge. Acta Palaeontologica Sinica, 18 (3):207232.
Raff, E. C., Andrews, M. E., Turner, F. R., Toh, E., Nelson, D. E., and Raff, R. A. 2013. Contingent interactions among biofilm-forming bacteria determine preservation or decay in the first steps toward fossilization of marine embryos. Evolution and Development, DOI: 10.1111/ede.12028.
Raff, E. C., Schollaert, K. L., Nelson, D. E., Donoghue, P. C. J., Thomas, C.-W., Turner, F. R., Stein, B. D., Dong, X., Bengtson, S., Huldtgren, T., Stampanoni, M., Chongyu, Y., and Raff, R. A. 2008. Embryo fossilization is a biological process mediated by microbial biofilms. Proceedings of the National Academy of Sciences of the United States of America, 105:19,36019,365.
Řehánek, J. and Mišík, M. 1991. New Upper Cretaceous cyst Pithonella siniformis n. sp. (Calciodinellaceae) from eastern Algeria. Geologica Carpathica, 42:111116.
Schiffbauer, J. D., Xiao, S., Sen Sharma, K., and Wang, G. 2012. The origin of intracellular structures in Ediacaran metazoan embryos. Geology, 40:223226.
Schulz, H. N. and Schulz, H. D. 2005. Large sulfur bacteria and the formation of phosphorite. Science, 307:416418.
Steiner, M., Wallis, E., Erdtmann, B.-D., Zhao, Y., and Yang, R. 2001. Submarine-hydrothermal exhalative ore layers in black shales from South China and associated fossils—insights into a lower Cambrian facies and bio-evolution. Palaeogeography, Palaeoclimatology, Palaeoecology, 169:165191.
Steiner, M., Zhu, M., Li, G., Qian, Y., and Erdtmann, B.-D. 2004. New early Cambrian bilaterian embryos and larvae from China. Geology, 32:833836.
Tappan, H. 1980. The Paleobiology of Plant Protists. W. H. Freeman and Company, San Francisco, 1028 p.
Taylor, K. G. and Macquaker, J. H. S. 2011. Iron minerals in marine sediments record chemical environments. Elements, 7:113118.
Villain, J. M. 1977. Les Calcisphaerulidae, Architectures, calcification de la paroi et phylogenese [The Calcisphaerulidae; ultrastructure, wall calcification and phylogeny]. Palaeontographica. Abteilung A: Palaeozoologie-Stratigraphie, 159:139177.
Wang, J. and Li, Z.-X. 2003. History of Neoproterozoic rift basins in South China: implications for Rodinia break-up. Precambrian Research, 122:141158.
Wang, X., Ni, S., Zeng, Q., Xu, G., Zhou, T., Li, Z., Xiang, L., and Lai, C. 1987. Biostratigraphy of the Yangtze Gorge Area (2) Early Palaeozoic Era. Geological Publishing House, Beijing, 641 p.
Wang, Y., Li, Y., and Zhang, Z. 2010. Note on small skeletal fossils from the uppermost Shuijingtuo Formation (early Cambrian) in the Yangtze Gorge area. Acta Palaeontologica Sinica, 49:511523.
Wilby, P. R. and Briggs, D. E. G. 1997. Taxonomic trends in the resolution of detail preserved in fossil phosphatized soft tissues. Geobios, Memoire special, No. 20, p. 493502.
Xiao, S. and Knoll, A. H. 1999. Fossil preservation in the Neoproterozoic Doushantuo phosphorite Lagerstätte, South China. Lethaia, 32:219240.
Xiao, S. and Knoll, A. H. 2000. Phosphatized animal embryos from the Neoproterozoic Doushantuo Formation at Weng'an, Guizhou, South China. Journal of Paleontology, 74:767788.
Xiao, S. and Schiffbauer, J. D. 2009. Microfossil phosphatization and its astrobiological implications, p. 89117. In Seckbach, J. and Walsh, M. (eds.), From Fossils to Astrobiology. Springer-Verlag, New York.
Yue, Z. and Bengtson, S. 1999. Embryonic and post-embryonic development of the early Cambrian cnidarian Olivooides . Lethaia, 32:181195.
Zhang, X. and Pratt, B. R. 1994. Middle Cambrian arthropod embryos with blastomeres. Science, 266:637639.
Zhang, X., Pratt, B. R., and Shen, C. 2011. Embryonic development of a middle Cambrian (500 myr old) scalidophoran worm. Journal of Paleontology, 85:898903.

Possible Animal Embryos from the Lower Cambrian (Stage 3) Shuijingtuo Formation, Hubei Province, South China

  • Jesse Broce (a1) (a2), James D. Schiffbauer (a2), Kriti Sen Sharma (a3), Ge Wang (a4) and Shuhai Xiao (a1)...


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed