Hostname: page-component-8448b6f56d-sxzjt Total loading time: 0 Render date: 2024-04-16T07:12:05.564Z Has data issue: false hasContentIssue false

Possible algal origin and life cycle of Ediacaran Doushantuo microfossils with dextral spiral structure

Published online by Cambridge University Press:  14 July 2015

Xi-Guang Zhang
Affiliation:
Key Laboratory for Palaeobiology, Yunnan University, Kunming, Yunnan 650091, China,
Brian R. Pratt
Affiliation:
Department of Geological Sciences, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E2, Canada

Abstract

In Ediacaran shallow-water dolomites of the Doushantuo Formation (ca. 570 Ma) of southern China, scarce phosphatized microfossils consisting of clusters of coil-like spheroids called Spiralicellula bulbifera and co-occurring spherical forms with helically arranged holes named Helicoforamina wenganica are interpreted to belong to the same taxon because both have a similar relative abundance and both, uniquely in the assemblage, exhibit a consistent dextral spiral feature—the oldest known fossil examples of fixed asymmetry. Thus, we interpret them as different stages of sexual and asexual life cycles in which the spiral structure was maintained throughout most of the developmental phases. While they can be placed with the acritarchs, we suggest they are a chlorophycean green alga, and like many Ediacaran macrofossils, may represent an extinct clade. This is compatible with the shoal-water marine depositional environment in which they lived, as it would have favored photosynthetic organisms over others kinds of encysting non-metazoan protists. This setting militates against their interpretation as putative embryos which has been put forward for a variety of forms co-occurring in the microfossil assemblage. The multiple affinities of the strikingly diverse biota remain far from resolved, but algal origins warrant further consideration.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agrawal, S. C. 2009. Factors affecting spore germination in algae—review. Folia Microbiologica, 54:273302.Google Scholar
Bailey, J. V., Joye, S. B., Kalanetra, K. M., Flood, B. E., and Corsetti, F. A. 2007a. Evidence of giant sulphur bacteria in Neoproterozoic phosphorites. Nature, 445:198201.Google Scholar
Bailey, J. V., Joye, S. B., Kalanetra, K. M., Flood, B. E., and Corsetti, F. A. 2007b. Bailey et al. reply. Nature, 446:E10E11.Google Scholar
Bengtson, S. and Budd, G. 2004. Comment on “Small bilaterian fossils from 40 to 55 million years before the Cambrian”. Science, 306:1291.CrossRefGoogle Scholar
Bengtson, S., Cunningham, J. A., Yin, C.-Y., and Donoghue, P. C. J. 2012. A merciful death for the “earlist bilaterian,” Vernanimalcula . Evolution and Development, 14:421427.Google Scholar
Bengtson, S. and Yue, Z. 1997. Fossilized metazoan embryos from the earliest Cambrian. Science, 277:16451648.CrossRefGoogle Scholar
Butterfield, N. J. 2011. Terminal developments in Ediacaran embryology. Science, 334:16551656.CrossRefGoogle ScholarPubMed
Cao, R.-J. 1997. Phosphatic stromatolite bioherms and associated microbial fossils from the Sinian Doushantuo Formation, central Guizhou, south China. Acta Palaeontologica Sinica, 36:295309.Google Scholar
Chen, J.-Y. 2004. The dawn of animal world. Jiangsu Science and Technology Press, Nanjing, 366 p.Google Scholar
Chen, J.-Y., Bottjer, D. J., Oliveri, P., Dornbos, S. Q., Gao, F., Ruffins, S., Chi, H.-M., Li, C.-W., and Davidson, E. H. 2004. Small bilaterian fossils from 40 to 55 million years before the Cambrian. Science, 305:218222.Google Scholar
Cohen, P. A., Knoll, A. H., and Kodner, R. B. 2009. Large spinose microfossils in Ediacaran rocks as resting stages of early animals. Proceedings of the National Academy of Sciences, U.S.A., 106:65196524.CrossRefGoogle ScholarPubMed
Dong, X.-P., Donoghue, P. C. J., Cheng, H., and Liu, J.-B. 2004. Fossil embryos from the middle and late Cambrian period of Hunan, south China. Nature, 427:237240.CrossRefGoogle ScholarPubMed
Dong, X.-P., Cunningham, J. A., Bengtson, S., Thomas, C.-W., Liu, J., Stampanoni, M., and Donoghue, P. C. J. 2013. Embryos, polyps and medusae of the early Cambrian scyphozoan Olivooides . Proceedings of the Royal Society B., 280: paper 20130071, 8 p.Google Scholar
Donoghue, P. C. J. 2007. Embryonic identity crisis. Nature, 445:155156.CrossRefGoogle ScholarPubMed
Dornbos, S. Q., Bottjer, D. J., Chen, J.-Y., Gao, F., Oliveri, P., and Li, C.-W. 2006. Environmental controls on the taphonomy of phosphatized animals and animal embryos from the Neoproterozoic Doushantuo Formation, southern China. Palaios, 21:314.Google Scholar
Dunthorn, M., Lipps, J. H., and Stoeck, T. 2010. Reassessment of the putative chiliate fossils Eotintinnopsis, Wujiangella, and Yonyangella from the Neoproterozoic Doushantuo Formation in China. Acta Protozoologica, 49:139144.Google Scholar
Edwards, W., Moles, A. T., and Franks, P. 2007. The global trend in plant twining direction. Global Ecology and Biogeography, 16:795800.CrossRefGoogle Scholar
Evitt, W. R. 1963. A discussion and proposals concerning fossil dinoflagellates, hystrichospheres, and acritarchs. I. Proceedings of the National Academy of Sciences, U.S.A., 149:158164.Google Scholar
Flügel, E. 2004. Microfacies of carbonate rocks. Springer, Berlin, 976 p.Google Scholar
Glaessner, M. F. and Daily, B. 1959. The geology and Late Precambrian fauna of the Ediacara fossil reserve. Records of the South Australian Museum 13:369401.Google Scholar
Gostling, N. J., Donoghue, P. C. J., and Bengtson, S. 1995. The earliest fossil embryos begin to mature. Evolution and Development, 9:206207.Google Scholar
Grenfell, H. R. 1995. Probable fossil zygnematacean algal spore genera. Review of Paleobotany and Palynology, 84:201220.CrossRefGoogle Scholar
Hagadorn, J. W., Xiao, S.-H., Donoghue, P. C. J., Bengtson, S., Gostling, N. J., Pawlowska, M., Raff, E. C., Raff, R. A., Turner, F. R., Yin, C.-Y., Zhou, C.-M., Yuan, X.-L., McFeely, M. B., Stampanoni, M., and Nealson, K. H. 2006. Cellular and subcellular structure of Neoproterozoic embryos. Science, 314:291294.Google Scholar
Herron, M. D., Desnitskiy, A. G., and Michod, R. E. 2010. Evolution of developmental programs in Volvox (Chlorophyta). Journal of Phycology, 46:316324.Google Scholar
Huldtgren, T., Cunningham, J. A., Yin, C.-Y., Stampanoni, M., Marone, F., Donoghue, P. C. J., and Bengtson, S. 2011. Fossilized nuclei and germination structures identify Ediacaran “animal embryos” as encysting protists. Science, 334:16961699.Google Scholar
International Association for Plant Taxonomy. 2012. International Code of Nomenclature for algae, fungi, and plants (Melbourne Code). Regnum Vegetabile 154. Koeltz Scientific Books, Koenigstein, xxx + 240 p.Google Scholar
Jiang, G.-Q., Shi, X.-Y., Zhang, S.-H., Wang, Y., and Xiao, S.-H. 2011. Stratigraphy and paleogeography of the Ediacaran Doushantuo Formation (ca. 635–551 Ma) in South China. Gondwana Research, 19:831849.CrossRefGoogle Scholar
Knoll, A. H. 1992. Vendian microfossils in metasedimentary cherts of the Scotia Group, Prins Karls Forland, Svalbard. Palaeontology, 35:751774.Google ScholarPubMed
Lu, M., Zhu, M.-Y., and Zhao, F.-C. 2012. Revisiting the Tianjiayuanzi section—the stratotype section of the Ediacaran Doushantuo Formation, Yangtze Goreges, South China. Bulletin of Geosciences, 87:183194.Google Scholar
Mendoza, L., Taylor, J. W., and Ajello, L. 2002. The Class Mesomycetozoea: a heterogeneous group of microorganisms at the animal-fungal boundary. Annual Review of Microbiology, 56:315344.Google Scholar
Moczydłowska, M. 2011. The early Cambrian phytoplankton radiation: acritarch evidence from the Lükati Formation, Estonia. Palynology, 35:103145.CrossRefGoogle Scholar
Palmer, A. R. 2009. Animal asymmetry. Current Biology, 19:R473R477.Google Scholar
Pratt, B. R., Raviolo, M. M., and Bordonaro, O. L. 2012. Carbonate platform dominated by peloidal sands: Lower Ordovician La Silla Formation of the eastern Precordillera, San Juan, Argentina. Sedimentology, 59:843866.Google Scholar
Qian, Y., Li, G.-X., Jiang, Z.-W., Chen, M.-E., and Yang, A.-H. 2007. Some phosphatized cyanobacterian fossils from the basal Cambrian of China. Acta Micropalaeontology Sinica, 24:222228.Google Scholar
Reichenbach, H. G. L. 1834. Johann Christoph Mössler's Handbuch der Gewächskunde, 3rd edition, Vol. 3, Phanerogamia. J. F. Hammerich, Altona, 768 p. Google Scholar
Reitlinger, E. A. 1948. Cambrian Foraminifera of Yakutsk. Biulleten Moskovskogo Obshchestva Ispytatelei Prirody, Otdel Geologicheskii, 23:7781. (In Russian) Google Scholar
Rossignol, M. 1962. Analyse pollinique de sédiments marins quaternaires en Israël. II. Sédiments pléistocènes. Pollen et Spores, 4:121148.Google Scholar
Schilthuizen, M. and Davison, A. 2005. The convoluted evolution of snail chirality. Naturwissenschaften, 92:504515.Google Scholar
Shen, C., Pratt, B. R., Lan, T., Hou, J.-B., Chen, L., Hao, B.-Q., and Zhang, X.-G. 2013. The search for Orsten-type fossils in southern China. Palaeoworld, 22:19.Google Scholar
Steiner, M., Zhou, M., Li, G., Qian, Y., and Erdtmann, B.-D. 2004. New Early Cambrian bilaterian embryos and larvae from China. Geology, 32:833836.Google Scholar
Sulek, J. 1997. Variations of the surface sculpture and cell wall ultrastructure of the zygospores in Chlamydomonas geitleri (Chlorophyta). Botanica Acta, 110:444451.CrossRefGoogle Scholar
Tang, F., Yin, C. Y., Bengtson, S., Liu, P. J., Wang, Z. Q., and Gao, L. Z. 2008. Octoradiate spiral organisms in the Ediacaran of south China. Acta Geologica Sinica, 82:2734.Google Scholar
Taylor, W. A. and Strother, P. K. 2008. Ultrastructure of some Cambrian palynomorphs from the Bright Angel Shale, Arizona, U.S.A. Review of Palaeobotany and Palynology, 151:4150.Google Scholar
Wang, D., Chen, L., Tang, Q., and Pang, K. 2012. Spheroidal fossils with helically distributed pores from the Ediacaran Doushantuo phosphorites of Weng'an, Guizhou. Acta Palaeontologica Sinica, 51:8895.Google Scholar
Wang, Y., Wang, X., and Huang, Y. 2008. Megascopic symmetrical metazoans from the Ediacaran Doushantuo Formation in the northeastern Guizhou, South China. Journal of China University of Geosciences, 19:200206.Google Scholar
Warming, E. 1884. Haandbog i den systematiske Botanik(second edition). P. G. Philipsens, Copenhagen, 434 p. Google Scholar
Xiao, S.-H., Hagadorn, J. W., Zhou, C.-M., and Yuan, X.-L. 2007a. Rare helical spheroidal fossils from the Doushantuo Lagerstätte: Ediacaran animal embryos come of age? Geology, 35:115118.Google Scholar
Xiao, S.-H. and Knoll, A. H. 2000. Phosphatized animal embryos from the Neoproterozoic Doushantuo Formation at Weng'an, Guizhou, South China. Journal of Paleontology, 74:767788.Google Scholar
Xiao, S.-H., Zhou, C.-M., and Yuan, X.-L. 2007b. Undressing and redressing Ediacaran embryos. Nature, 446:E9E10.CrossRefGoogle ScholarPubMed
Xiao, S.-H., Knoll, A. H., Schiffbauer, J. D., Zhou, C.-M., and Yuan, X.-L. 2012. Comment on “Fossilized nuclei and germination structures identify Ediacaran ‘animal embryos' as encysting protists”. Science, 335:1169d.Google Scholar
Xiao, S.-H., Knoll, A. H., Yuan, X.-L., and Pueschel, C. M. 2004. Phosphatized multicellular algae in the Neoproterozoic Doushantuo Formation, China, and the early evolution of florideophyte red algae. American Journal of Botany, 91:214227.Google Scholar
Xiao, S.-H., Yuan, X.-L., and Knoll, A. H. 2000. Eumetazoan fossils in terminal Proterozoic phosphorites?: Proceedings of the National Academy of Sciences, U.S.A., 97:1368413689.Google Scholar
Xiao, S.-H., Zhang, Y., and Knoll, A. H. 1998. Three-dimensional preservation of algae and animal embryos in a Neoproterozoic phosphorite. Nature, 391:553558.CrossRefGoogle Scholar
Xue, Y.-S., Tang, T.-F., Yu, C.-L., and Zhou, C.-M. 1995. Large spheroidal Chlorophyta fossils from Doushantuo Formation phosphoric sequence (late Sinian), central Guizhou, South China. Acta Palaeontologica Sinica, 34:688706.Google Scholar
Xue, Y.-S., Zhou, C.-M., and Tang, T.-F. 2001. Reproduction pattern of the spherical chlorophyte fossils from the Doushantuo Formation, Weng'an, Guizhou. Acta Micropalaeontologica Sinica, 18:373378.Google Scholar
Yin, C.-Y., Bengtson, S., and Yue, Z. 2004. Silicified and phosphatized Tianzhushania, spheroidal microfossils of possible animal origin from the Neoproterozoic of southern China. Acta Palaeontologica Polonica, 49:112.Google Scholar
Yin, L. and Li, Z. 1978. Precambrian microfossils of southwest China, with reference to their stratigraphic significance. Memoirs of the Nanjing Institute of Geology and Palaeontology, Academia Sinica, 10:41102.Google Scholar
Yin, L.-M., Zhu, M.-Y., Knoll, A. H., Yuan, X.-L., Zhang, J.-M., and Hu, J. 2007. Doushantuo embryos preserved inside diapause egg cysts. Nature, 446:661663.Google Scholar
Zhang, X.-G. and Pratt, B. R. 1994. Middle Cambrian arthropod embryos with blastomeres. Science, 266:637639.CrossRefGoogle ScholarPubMed
Zhang, X.-G. and Pratt, B. R. 2008. Microborings in early Cambrian phosphatic and phosphatized fossils. Palaeogeography, Palaeoclimatology, Palaeoecology, 267:185195.Google Scholar
Zhang, X.-G., Pratt, B. R., and Shen, C. 2011. Embryonic development of a middle Cambrian (500 Myr old) scalidophoran worm. Journal of Paleontology, 85:898903.Google Scholar
Zhu, M., Gehling, J. G., Xiao, S., Zhao, Y., and Droser, M. L. 2008. Eight-armed Ediacara fossil preserved in contrasting taphonomic windows from China and Australia. Geology 36:867870.CrossRefGoogle Scholar