Hostname: page-component-7c8c6479df-nwzlb Total loading time: 0 Render date: 2024-03-28T08:11:28.669Z Has data issue: false hasContentIssue false

Hexactinellid sponges from the Early Cambrian black shale of South Anhui, China

Published online by Cambridge University Press:  20 May 2016

Wen Wu
Affiliation:
Nanjing Institute of Geology and Palaeontology, Chinese Academy of Science, Nanjing 210008, PR China, , ,
Ai-Hua Yang
Affiliation:
Nanjing Institute of Geology and Palaeontology, Chinese Academy of Science, Nanjing 210008, PR China, , ,
Dorte Janussen
Affiliation:
Forschungsinstitut und Naturmuseum Senckenberg, Senckenberganlage 25, D-60325 Frankfurt am Main, Germany,
Michael Steiner
Affiliation:
Technische Universität Berlin, Sekretariat ACK 14, Ackerstrasse 71-76, D-13355 Berlin, Germany,
Mao-Yan Zhu
Affiliation:
Nanjing Institute of Geology and Palaeontology, Chinese Academy of Science, Nanjing 210008, PR China, , ,

Abstract

Three new and one completely preserved species of hexactinellid sponges are described from Early Cambrian black shales of South Anhui, China. The sponges occur in the middle part of the Huangboling Formation, which is assigned to the early Canglangpuian based on trilobite biostratigraphy. Metaxyspongia skelidata n. gen. and sp. and Hexatractiella dongzhiensis n. sp. are subcylindrical thin-walled Protospongiidae. Ratcliffespongia multiforamina n. sp. is assigned to the Hintzespongiidae. With these new sponges, the first occurrences of the Protospongiidae and Hintzespongiidae, and of Hexatractiella Mehl, 1996, can be traced back to the Early Cambrian. Solactiniella cf. plumata Steiner et al., 1993, with irregular rossellimorph skeletal architecture and regular spicular organization, is found here associated with the above species. Thus, the Anhui assemblage can be considered as intermediate between Atdabanian shallow-water communities of hexactinellids with irregular skeletons and the Middle Cambrian deepwater sponge facies characterized by regularly organized Hexactinellida.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Beresi, M. S., and Rigby, J. K. 1994. Sponges and chancelloriids from the Cambrian of western Argentina. Journal of Paleontology, 68:208217.CrossRefGoogle Scholar
Bergquist, P. R. 1978. Sponges. University of California Press, Berkeley, 268 p.Google Scholar
Brasier, M., Green, O., and Shields, G. 1997. Ediacarian sponge spicule clusters from southwestern Mongolia and the origins of the Cambrian fauna. Geology, 25(4):303306.Google Scholar
Chen, J., Hou, X., and Li, G. 1990. New Lower Cambrian Demosponges—Quadrolaminiella gen. nov. from Chengjiang, Yunnan. Acta Palaeontologica Sinica, 29(4):402414.Google Scholar
Chen, J., Hou, X., and Lu, H. 1989. Lower Cambrian leptomitids (Demospongea), Chengjiang, Yunnan. Acta Palaeontologica Sinica, 28(1):1730.Google Scholar
Chen, J., Zhou, G., Zhu, M., and Ye, G. 1996. The Chengjiang biota, a unique window of the Cambrian explosion. National Museum of Natural Science (Taiwan), 222 p. (In Chinese) Google Scholar
Dawson, J. W. 1888. Preliminary note on new species of sponges from the Quebec Group at Little Métis. Canadian Record of Science, 3(2):4959.Google Scholar
Dawson, J. W., and Hinde, G. J. 1890. New species of fossil sponges from the Siluro–Cambrian at Little Métis on the lower St. Lawrence. Royal Society of Canada Transactions, 7(4):3155.Google Scholar
Dong, X. P., and Knoll, A. H. 1996. Middle and Late Cambrian sponge spicules from Hunan, China. Journal of Paleontology, 70(2):173184.Google Scholar
Finks, R. M. 1960. Late Paleozoic sponge faunas of the Texas region: the siliceous sponges. Bulletin of the American Museum of Natural History, 120(1), 160 p.Google Scholar
Finks, R. M. 1983. Fossil Hexactinellida, p. 101115. In Rigby, J. K. and Stearn, C. (eds.), Sponges and Spongiomorphs. Notes for a Short Course. University of Tennessee Press, Knoxville.Google Scholar
Hinde, G. J. 1887. A monograph of the British fossil sponges, Pt. 1, Sponges of Palaeozoic and Jurassic strata. Palaeontographical Society, London, 40(1), 92 p.Google Scholar
Krautter, M. 2002. Fossil Hexactinellida: An overview, p. 12111223. In Hooper, J.N.A. and Van Soest, R.W.M. (eds.), Systema Porifera: A Guide to the Classification of Sponges. Kluwer Academic/Plenum Publishers, New York.Google Scholar
Li, C., Chen, J., and Hua, T. 1998. Precambrian sponges with cellular structures. Science, 279(6):879882.Google Scholar
Mehl, D. 1991. Are Protospongiidae the stem group of modern Hexactinellida? p. 4453. In Reitner, J. and Keupp, H. (eds.), Fossil and Recent Sponges. Springer Verlag, Berlin.Google Scholar
Mehl, D. 1996. Phylogenie und Evolutionsökologie der Hexactinellida (Porifera) im Paläozoikum. Geologisch-Paläontologische Mitteilungen Innsbruck, 4, 55 p.Google Scholar
Mehl, D., and Erdtmann, B.-D. 1994. Sanshapentella dapingi n. gen., n. sp.—a new hexactinellid sponge from the Early Cambrian (Tom-motian) of China. Berliner Geowissenschaftliche Abhandlungen (E), 13:315318.Google Scholar
Mehl, D., Rigby, J. K., and Holmes, S. R. 1993. Hexactinellid sponges from the Silurian–Devonian Roberts Mountains Formation in Nevada and hypothesis of hexactine-stauractine origin. Brigham Young University Geology Studies, 39:101124.Google Scholar
Mehl-Janussen, D. 1999a. Die frühe Evolution der Porifera. Phylogenie und Evolutionsökologie der Poriferen im Paläozoikum mit chwerpunkt der desmentragenden Demospongiae (“Lithistide”). Münchner Geowissenschaftliche Abhandlungen (A), 37:572.Google Scholar
Mehl-Janussen, D. 1999b. Die frühe Evolution der Porifera. Münchner Geowissenschaftliche Abhandlungen, 37A, 72 p.Google Scholar
Qian, Y., and Bengtson, S. 1989. Palaeontology and biostratigraphy of the Early Cambrian Meishucunian Stage in Yunnan Province, South China. Fossils and Strata, 24:1156.Google Scholar
Rauff, H. 1894. Palaeospongiologie, Zweiter Theil; Erste Halfte. Palaeontographica, 41:233346.Google Scholar
Reid, R. E. H. 1958. A monograph of the Upper Cretaceous Hexactinellida of Great Britain and Northern Ireland, Pt. I. Palaeontographical Society, London, 111, 46 p.Google Scholar
Reitner, J., and Mehl, D. 1995. Early Paleozoic diversification of sponges: new data and evidences. Geologische Paläontologische Mitteilungen Universität Innsbruck, 20:335347.Google Scholar
Rigby, J. K. 1969. A new Middle Cambrian hexactinellid sponge of western Utah. Journal of Paleontology, 43:125128.Google Scholar
Rigby, J. K. 1983. Sponges of the Middle Cambrian Marjum Limestone from the House Range and Drum Mountains of western Millard Country, Utah. Journal of Paleontology, 57(2):240270.Google Scholar
Rigby, J. K. 1986. Sponges of the Burgess Shale (Middle Cambrian), British Columbia. Palaeontographica Canadiana, 2:1105.Google Scholar
Rigby, J. K. 1991. Evolution of Paleozoic heteractinid calcareous sponges and demosponges—patterns and records, p. 83101. In Reitner, J. and Keupp, H. (eds.), Fossil and Recent Sponges. Springer-Verlag, Berlin.Google Scholar
Rigby, J. K., and Church, S. B. 1990. A new Middle Cambrian hexactinellid, Ratcliffespongia wheeleri, from western Utah, and skeletal structure of Ratcliffespongia . Journal of Paleontology, 64(3):331334.CrossRefGoogle Scholar
Rigby, J. K., and Collins, D. 2004. Sponges of the Middle Cambrian Burgess and Stephen Shale formations, British Columbia. Royal Ontario Museum Contributions in Sciences, 1, 155 p.Google Scholar
Rigby, J. K., and Gutschick, R. C. 1976. Two new lower Paleozoic hexactinellid sponges from Utah and Oklahoma. Journal of Paleontology, 50(1):7985.Google Scholar
Rigby, J. K., and Harris, D. A. 1979. A new Silurian sponge fauna from northern British Columbia, Canada. Journal of Paleontology, 53(4):968980.Google Scholar
Rigby, J. K., and Hou, X. 1995. Lower Cambrian demosponges and hexactinellid sponges from Yunnan, China. Journal of Paleontology, 69(6): 10091019.Google Scholar
Rigby, J. K., and Murphy, M.A. 1983. Gabelia, a new late Devonian lyssakid protosponge from the Roberts Mountains, Nevada. Journal of Paleontology, 57(4):797803.Google Scholar
Rigby, J. K., and Stuart, R. J. 1988. Fossil sponges from the Silurian-Devonian Roberts Mountains Formation in northeastern Nevada. New Mexico Bureau of Mines & Mineral Resources, 44:129137.Google Scholar
Rigby, J. K., Maher, B. J., and Browne, Q. J. 1991. New hexactinellids from the Siluro–Devonian of the Snake Mountains, Elko Country, Nevada, and a new locality for Gabelia . Journal of Paleontology, 65(5):709714.Google Scholar
Rozanov, A. Yu, and Zhuravlev, A. Yu. 1992. The Lower Cambrian fossils record of the Soviet Union, p. 205282. In Lipps, J.H. and Signor, P.W. (eds.), Origin and Early Evolution of the Metazoa. Plenum Press, New York.Google Scholar
Saito, K. 1934. Older Cambrian Trilobita and Conchostraca from northwestern Korea. Japanese Journal of Geology and Geography, 11:211237.Google Scholar
Salter, J. W. 1864. On some new fossils from the Lingula-flags of Wales. Quarterly Journal of the Geological Society of London, 20:233241.Google Scholar
Schmidt, O. 1870. Grundzüge einer Spongien-fauna des atlantischen Gebietes. Leipzig, 88 p.Google Scholar
Steiner, M., Mehl, D., Reitner, J., and Erdtmann, B.-D. 1993. Oldest entirely preserved sponges and other fossils from the lowermost Cambrian and a new facies reconstruction of the Yangtze Platform (China). Berliner Geowissenschaftliche Abhandlungen (E), 9:293329.Google Scholar
Walcott, C. D. 1905. Cambrian faunas of China. Proceedings of the United States National Museum, 29:1106.Google Scholar
Walcott, C.D. 1920. Middle Cambrian Spongiae. Smithsonian Miscellaneous Collections, 67(6):261364.Google Scholar
Wu, Y. D. 1997. The Cambrian sedimentary facies and its temporal-spatial evolution in the Dongzhi area of South Anhui. Geology of Anhui, 7(3):3338. (In Chinese) Google Scholar
Wu, Y. D. 2001. Sequence stratigraphy of the Cambrian in the Dongzhi region of Southern Anhui Province. Journal of Palaeogeography, 3(3):5562. (In Chinese) Google Scholar
Yang, A., Zhu, M., Zhang, J., and Li, G. 2003. Early Cambrian eodis-coid trilobites of the Yangtze Platform and their stratigraphic implications. Progress in Natural Science, 13(11):861866.Google Scholar
Yuan, X., Xiao, S., Parsley, R. L., Zhou, C., Chen, Z., and Hu, J. 2002. Towering sponges in an Early Cambrian Lagerstätte: Disparity between nonbilaterian and bilaterian epifaunal tiers at the Neoproterozoic–Cambrian transition. Geology, 30(4):363366.Google Scholar
Yue, W., Wei, N., Jiao, S., and Jiang, Y. 1990. Sedimentary characteristics and facies model of of shelf-to-slope environments in the Cambrian–Ordovician of Lower Yangtze Area. Bulletin of the Nanjing Institute of Geology and Mineral Resources, Chinese Academy, Geological Sciences, Supplement, 8:174.Google Scholar
Zhang, W. T. 1953. Some Lower Cambrian trilobites from western Hubei. Acta Palaeontologica Sinica, 1(3):121149.Google Scholar
Zhang, X., and Pratt, B. R. 1994. New and extraordinary Early Cambrian sponge spicule assemblage from China. Geology, 22:4346.Google Scholar
Zhou, C., Yuan, X., and Y. Xue. 1998. Sponge spicule-like pseudofossils from the Neoproterozoic Toushantou Formation in Weng'an, Guizhou, China. Acta Micropalaeontologica Sinica, 15(4):380384.Google Scholar
Zhu, M., Zhang, J., and Li, G. 2001. Sedimentary environments of the Early Cambrian Chengjiang Biota: Sedimentology of the Yu'anshan Formation in Chengjiang County, eastern Yunnan. Acta Palaeontologica Sinica, 40 (supp.), p. 80105. In Zhu, M., Van Iten, H., Peng, S., and Li, G. (eds.), The Cambrian of South China. Science Press, Beijing.Google Scholar