Hostname: page-component-76fb5796d-zzh7m Total loading time: 0 Render date: 2024-04-25T16:24:54.143Z Has data issue: false hasContentIssue false

Halysis Høeg, 1932—An Ordovician coralline red alga?

Published online by Cambridge University Press:  20 May 2016

Robert Riding
Affiliation:
School of Earth, Ocean and Planetary Sciences, Cardiff University, Cardiff CF10 3YE United Kingdom, , #x003C;riding@cardiff.ac.uk>
Juan C. Braga
Affiliation:
Departamento de Estratigrafía y Paleontología, Universidad de Granada, Campus de Fuentenueva 18002 Granada, Spain,

Abstract

The systematic position of the Ordovician calcareous microfossil Halysis Høeg, 1932 has long been uncertain. Only known from thin sections, its morphology has been suggested to be either a single chain of cells or a series of tubes and it has been regarded as a green alga or cyanobacterium. Here we propose that Halysis represents a single sheet of cells. This new morphological interpretation accounts for Halysis's appearance in thin section as an extended flexuous series of cells, some of which are not seen to be in mutual contact, exhibiting nonlinear cell-size variation. It is also consistent with the absence of tubiform sections unequivocally attributable to Halysis. This reassessment suggests comparisons between Halysis and Mesozoic–Cenozoic thin laminar unistratose coralline red algae. Halysis cells are relatively large (40–210 µm), but their lower range is comparable to cells of corallinaceans such as Lithoporella (Foslie) Foslie, 1909. Applanate thallus morphology in Halysis resembles that of thin laminar species of Lithophyllum Philippi, 1837 that were traditionally included in Titanoderma Nägeli, 1858. Interpretation of Halysis as a coralline-like alga strengthens the likelihood that a variety of corallines was present in the Ordovician, more than 300 Ma prior to the currently recognized major diversification of this important group of red algae in the Cretaceous.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aguirre, J., Riding, R., and Braga, J. C. 2000. Diversity of coralline red algae: origination and extinction patterns from the Early Cretaceous to the Pleistocene. Paleobiology, 26:651667.2.0.CO;2>CrossRefGoogle Scholar
Antropov, I. A. 1950. New species of Upper Devonian foraminifers from parts of the Russian Platform. Izvestiya Kazanskovo Filial, Akademii nauk SSSR, Geol. Inst. Izvestiya, Seriya Geologia, Kazan, 1:2133. (In Russian)Google Scholar
Baschnagel, R. A. 1966. New fossil algae from the Middle Devonian of New York. Transactions of the American Microscopical Society, 85:297302.CrossRefGoogle Scholar
Bergström, S. M. 1979. Whiterockian (Ordovician) conodonts from the Hølanda Limestone of the Trondheim Region, Norwegian Caledonides. Norsk Geologisk Tidsskrift, 59:295307.Google Scholar
Bian, L., and Liu, Z. 1999. Discovery of Late Ordovician algal fossils of Oedogoniales in Jiangxi Province, China. Acta Palaeontologica Sinica, 38(1):4649, 1 pl. (In Chinese with English abstract)Google Scholar
Braga, J. C., and Aguirre, J. 1995. Taxonomy of fossil coralline algal species: Neogene Lithophylloideae (Rhodophyta, Corallinaceae) from southern Spain. Review of Palaeobotany and Palynology, 86:265285.Google Scholar
Brooke, C., and Riding, R. 1998. Ordovician and Silurian coralline red algae. Lethaia, 31:185195.CrossRefGoogle Scholar
Brooke, C., and Riding, R. 2000. Graticula and its derivatives, replacement name for the alga Craticula Brooke and Riding non Grunow. Lethaia, 33:82.Google Scholar
Brown, A. 1894. On the structure and affinities of the genus Solenopora, together with descriptions of new species. Geological Magazine, 31:145151, 195–203, pl. 5.Google Scholar
Bruton, D. L., and Bockelie, J. F. 1980. Geology and paleontology of the Hölanda area, western Norway—a fragment of North America?, p. 4147. In Wones, D. R. (ed.), The Caledonides of the U.S.A., Memoir 2, Department of Geological Sciences, Virginia Polytechnic Institute and State University. IGCP Project 27, Caledonide Orogen, 1979 meeting, Blacksburg, Virginia.Google Scholar
Chuvashov, B., Luchinina, V. A., Shuysky, V. P., Shaykin, I. M., Berchenko, O. I., Ishchenko, A. A., Saltovskaya, V. D., and Shirshova, D. I. 1987. Iskopaemye izvestkovye vodorosli (morfologiya, sistematika, metody izucheniya). Trudy Institutom Geologii i Geofizikii, Sibirskoy otdeleniya, Akademii nauk SSSR, 674:1225, Novosibirsk, “Nauka.”Google Scholar
Cummings, R. H. 1955. New genera of Foraminifera from the British Lower Carboniferous. Washington Academy of Sciences Journal. 45(1):18.Google Scholar
Dean, W. T. 1985. Relationships of Cambrian–Ordovician faunas in the Caledonide-Appalachian Region, with particular reference to trilobites, p. 1647. In Gayer, R. A. (ed.), The Tectonic Evolution of the Caledonide-Appalachian Orogen, International Monograph Series on Interdisciplinary Earth Science Research and Applications. Friedrich Vieweg and Sohn, Braunschweig, Germany.Google Scholar
Decaisne, J. 1842. Essais sur une classification des algues et des polypiers calcifères de Lamouroux. Annales de Sciences naturelles (Botanique), ser. 2, 17:297381, pls. 14–17.Google Scholar
Foslie, M. 1904. Algologisker notiser. Det Kongelige Norske Videnskabers Selskabs Skrifter, 1904(2):19.Google Scholar
Foslie, M. 1909. Algologisker notiser, VI. Det Kongelige Norske Videnskabers Selskabs Skrifter, 1909(2):163.Google Scholar
Gnilovskaya, M. B. 1972. Izvestkovye vodorosli srednego i pozdnego ordovika Vostochnogo Kazakhstana. USSR Academy of Sciences, Institute of Precambrian Geology and Geochronology, “Nauka,” Leningrad, 196 p.Google Scholar
Grant, S. W. F., Knoll, A. H., and Germs, G. J. B. 1991. Probable calcified metaphytes in the latest Proterozoic Nama Group, Namibia. Journal of Paleontology, 65:118.Google Scholar
Guilbault, J. P., Hubert, C., and Mamet, B. L. 1976. Nuia et Halysis, deux Algues ordoviciennes énigmatiques des Basses-Terres du Saint-Laurent. Naturaliste canadien, 10:119132.Google Scholar
Héroux, Y., Hubert, C., Mamet, B., and Roux, A. 1977. Algues siluriennes de la Formation de Sayabec (Lac Matapédia, Québec). Canadian Journal of Earth Sciences, 14:28652908.Google Scholar
Heydrich, F. 1897. Corallinaceae, insbesondere Melobesieae. Berlin Deutsche Botanische Gesellschaft, 15:3471, 3 pls.Google Scholar
Høeg, O. E. 1932. Ordovician algae from the Trondheim area. [In Kiær, J. The Hovin Group in the Trondheim area.]Skrifter utgitt av Det Norske Videnskaps-Akademi i Oslo I Matematisk-naturvidenskapelig Klasse, No. 4:6396, pls. 1–11.Google Scholar
Horodyski, R. J., and Mankiewicz, C. 1990. Possible late Proterozoic skeletal algae from the Pahrump Group, Kingston Range, southeastern California. American Journal of Science, 290–A:149169.Google Scholar
Ischenko, A. A. 1985. Silurian algae of Podolia. “Naukova Dumka.” Academy of Science, Ukrainian SSSR, Institute of Geological Science, Kiev, 116 p., 40 pls. (In Russian)Google Scholar
Ishijima, W. 1936. On the classification and phylogenetic relation of genera of the Melobesieae. Journal of the Geological Society of Japan, 43:938941.Google Scholar
Johnson, J. H. 1956. Ancestry of the coralline algae. Journal of Paleontology, 30:563567.Google Scholar
Johnson, J. H. 1960. Paleozoic Solenoporaceae and related red algae. Quarterly of the Colorado School of Mines, 55, 77 p.Google Scholar
Kiær, J. 1932. The Hovin Group in the Trondheim area. Skrifter utgitt av Det Norske Videnskaps-Akademi i Oslo I Matematisk-naturvidenskapelig Klasse, No. 4:1175, 28 pls.Google Scholar
Lemoine, P. 1911. Structure anatomique des Mélobésiées. Application à la classification. Annales d'Institut Océanographique de Monaco, 2, 1213, pls. 1–5.Google Scholar
Link, J. H. F. 1820. Epistola de algis aquaticis in genera disponendis, p. 18, pl. 1. In Nees von Esenbeck, C. G. D. (ed.), Horae physicae berolinenses, 74, Bonn.Google Scholar
Lipina, O. A. 1959. Find of foraminifers in the Silurian and Ordovician of Siberia. Doklady Akademiya Nauk SSSR, 128(4):823826. (In Russian)Google Scholar
Loeblich, A. R. Jr., and Tappan, H. 1964. Part C, Protista 2, Sarcodina, chiefly “thecamoebians” and Foraminiferida, p. C1C510a. In Moore, R. C. (ed.), Treatise on Invertebrate Paleontology. Geological Society of America and University of Kansas Press, Lawrence.Google Scholar
Mamet, B., Roux, A., Lapointe, M., and Gauthier, L. 1992. Algues ordoviciennes et siluriennes de l'lle d'Anticosti (Québec, Canada). Revue de Micropaléontologie, 35:211248.Google Scholar
Maslov, V. P. 1956. Iskopaemye izvestkovye vodorosli SSSR. Trudy Instituta geologicheskikh nauk, 160:1–302. Akademii nauk SSSR, Moscow.Google Scholar
Miretskaya, N. M. 1988. Calcareous algae and palaeobiocoenoses of the Mamontov Stage of the Middle Devonian in Salair, p. 9397, pl. 33. In Dubatolov, V. N. and Moskalenko, T. A. (eds.), Calcareous Algae and Stromatolites; Systematics, Biostratigraphy, Facies Analysis. USSR Academy of Sciences, Siberian Branch, Institute of Geology and Geophysics. Novosibirsk, “Nauka.” (In Russian)Google Scholar
Munnecke, A., Servais, T., and Vachard, D. 2001. Halysis Høeg, 1932–a problematic Cyanophyceae: New evidence from the Silurian of Gotland (Sweden). Neues Jahrbuch für Geologie und Paläontologie, Monatshefte, 2001(1):2142.Google Scholar
Nägeli, C. 1858. Die Starkekoerner. Volume 2 of Nägeli, C and C. Cramer, Pflanzenphysiologische Untersuchungen. Friedich Schulthess, Zurich, 624 p., 10 pls.Google Scholar
Neuman, R. B., and Bruton, D. L. 1974. Early Middle Ordovician fossils from the Hølanda region, Norway. Norsk Geologisk Tidsskrift, 54:69115.Google Scholar
Nicholson, H. A., and Etheridge, R. Jr. 1878. A monograph of the Silurian fossils of the Girvan District in Ayrshire with special reference to those contained in the “Gray Collection.” Volume I, Fasciculus 1 (Rhizopoda, Actinozoa, Trilobita). W. Blackwood and Sons, Edinburgh, 135 p.Google Scholar
Nicholson, H. A., and Etheridge, R. Jr. 1885. On the synonymy, structure, and geological distribution of Solenopora compacta, Billings, sp. Geological Magazine, decade 3:529535.Google Scholar
Philippi, R. 1837. Beweis dass die Nulliporen Pflanzen sind. Archiven der Naturgesellschaft, 3:387393, pl. 9, figs. 2–6.Google Scholar
Pia, J. 1930. Neue Arbeiten über fossile Solenoporaceae und Corallinaceae. Neues Jahrbuch für Mineralogie, Geologie, und Paläontologie, Ref., p. 122147.Google Scholar
Pohler, S. M. L., and James, N. P. 1989. Reconstruction of a Lower/Middle Ordovician carbonate shelf margin: Cow Head Group, western Newfoundland. Facies, 21:189262.Google Scholar
Poncet, J. 1986. Les algues calcaires du Paléozoïque inférieur de la Baie d'Hudson et de l'Archipel arctique canadien. Bulletin Centres Recherche Exploration-Production Elf-Aquitaine, 10:259282.Google Scholar
Pronina, T. V. 1963. Foraminifers and some associated microorganisms from the Silurian of the Ufa amphitheatre. Palaeontological Journal, 4:313, 2 pls. (In Russian)Google Scholar
Rabenhorst, L. 1863. Kryptogamen-Flora von Sachsen, der Ober-Lausitz, Thuringen und Nordbohmen. Abteilung I. E. Krummer, Leipzig, 653 p.Google Scholar
Reitlinger, E. A. 1954. Devonian foraminifers of certain sections of the eastern part of the Russian Platform. Vsesoyuznego Nauchno-Issledovatels'logo Geologo-razvedochnogo Institut (VNIGRI), Trudy, Neftyanogo Instituta, Palaeontologicheskii Sbornik, 1:5281, pls. 17–22. (In Russian)Google Scholar
Riding, R. 2002. Biofilm architecture of Phanerozoic cryptic carbonate marine veneers. Geology, 30:3134.Google Scholar
Riding, R., and Fan, J. 2001. Ordovician calcified algae and cyanobacteria, northern Tarim Basin subsurface, China. Palaeontology, 44:783810.Google Scholar
Riding, R., Cope, J. C. W., and Taylor, P. D. 1998. A coralline-like red alga from the Lower Ordovician of Wales. Palaeontology, 41:10691076.Google Scholar
Rothpletz, A. 1908. Ueber Algen und Hydrozoen im Silur von Gotland und Oesel. Kungl. Svenska Vetenskapsakademiens Handlingar, 43(5), 25 p., 6 pls.Google Scholar
Saltovskaya, V. D. 1984. Some calcareous algae from Tadzhikistan. Akademiya Nauk Tadzhikskoy SSR, Institute of Geology, Dushanbe, p. 141160. (In Russian)Google Scholar
Shuysky, V. P. 1973. Reefal Calcareous Algae from the Lower Devonian of the Urals. “Nauka,” USSR Academy of Sciences, Institute of Geology and Geochemistry, Moscow, 155 p. (In Russian)Google Scholar
Silva, P. C., and Johansen, H. W. 1986. A reappraisal of the order Corallinales (Rhodophyta). British Phycological Journal, 21:245254.CrossRefGoogle Scholar
Tappan, H. 1980. The Paleobiology of Plant Protists. Freeman, San Francisco, USA, 1,028 p.Google Scholar
Wettstein, R. R. 1901. Handbuch der Systematischen Botanik. Volume 1. Deuticke, Leipzig, 201 p.Google Scholar
Woelkerling, W. J. 1988. The Coralline Red Algae: An analysis of the genera and subfamilies of Nongeniculate Corallinaceae. Oxford University Press, Oxford, England, 268 p.Google Scholar
Woelkerling, W. J. 1998. Lamarck's Nullipores, p. 243278. In Woelkerling, W. J. and Lamy, D. (eds.), Non-geniculate Coralline Red Algae and the Paris Museum, Systematic and Scientific History. Publications Scientifiques du Muséum national d'Histoire naturelle, Paris, France.Google Scholar
Wood, A. 1948. Sphaerocodium,” a misinterpreted fossil from the Wenlock Limestone. Proceedings Geologists' Association, 59:922, pls. 2–5.Google Scholar
Yabe, H. 1912. Ueber einige Gesteinbildende Kalkalgen von Japan und China. Science Reports of the Tohoku Imperial University, Sendai, Japan, second series (Geology) (1912–1914), 1, 8 p., 2 pls.Google Scholar