Hostname: page-component-8448b6f56d-t5pn6 Total loading time: 0 Render date: 2024-04-18T07:44:59.865Z Has data issue: false hasContentIssue false

Early Cambrian metazoan eggs, embryos, and phosphatic microfossils from northwestern Canada

Published online by Cambridge University Press:  20 May 2016

Leanne J. Pyle
Affiliation:
Geological Survey of Canada, 9860 West Saanich Road, Sidney, British Columbia V8L 4B2,
Guy M. Narbonne
Affiliation:
Department of Geological Sciences and Geological Engineering, Queen's University, Kingston, Ontario K7L 3N6, ,
Godfrey S. Nowlan
Affiliation:
Geological Survey of Canada, 3303-33rd St. NW, Calgary, Alberta T2L 2A7,
Shuhai Xiao
Affiliation:
Department of Geological Sciences, Virginia Polytechnic Institute and State University, Blacksburg 24061,
Noel P. James
Affiliation:
Department of Geological Sciences and Geological Engineering, Queen's University, Kingston, Ontario K7L 3N6, ,

Abstract

Three-dimensionally phosphatized, spherical fossils, interpreted as metazoan eggs and embryos on the basis of taphonomic features and cleavage patterns, are reported for the first time from the Cambrian of North America. These microfossils occur with a phosphatized biota of skeletonized fossils, including specimens indicative of the earliest Cambrian Anabarites–Protohertzina Zone in the Wernecke Mountains of eastern Yukon Territory, northwestern Canada. They range in size from 0.25 mm to more than 1.0 mm in diameter and can be referred to two genera, Olivooides Qian, 1977 and Archaeooides Qian, 1977. The North American discovery extends the biogeographic range of earliest Cambrian eggs and embryos from coeval successions in China and Siberia, suggesting a wide geographic distribution of these taxa, and emphasizes the crucial role of local environmental and taphonomic conditions in preserving this phosphatic window into the record of early animal evolution. In addition to previously reported taxa, the phosphatized biota also include indeterminate spheroids, fused clusters of Protohertzina siciformis Missarzhevsky, 1973, the enigmatic rodlike fossil Zhejiangorhabdion comptum Yue and Zhao, 1993, phosphatized fossils, including Paradoxiconus typicalis Qian et al., 2001, protoconularid Carinachites sp., and phosphatic tubes assigned to Hyolithellus cf. H. isiticus Missarzhevsky, 1969, cf. Pseudorthotheca sp., and ?Rugatotheca sp.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ayala, F. J., Rhetsky, A., and Ayala, F. J. 1998. Origin of the metazoan phyla: Molecular clocks confirm paleontological estimates. Proceedings of the National Academy of Sciences of the United States of America, 95:606611.Google Scholar
Azmi, R. J. 1983. Microfauna and age of the Lower Tal Phosphorite of Mussoorie Syncline, Garwhal Lesser Himalaya, India. Himalayan Geology, 11:373409.Google Scholar
Azmi, R. J., and Pancholi, V. P. 1983. Early Cambrian (Tommotian) conodonts and other shelly microfauna from the Upper Krol of Mussoorie Syncline, Garwhal Lesser Himalaya, with remarks on the Precambrian-Cambrian boundary. Himalayan Geology, 11:360372.Google Scholar
Azmi, R. J., and Paul, S. K. 2004. Discovery of Precambrian Cambrian boundary protoconodonts from the Gangolihat Dolomite of Inner Kumaun Lesser Himalaya: Implication on age and correlation. Current Science, 86:16531660.Google Scholar
Bahde, J., Baretta, C., Cederstrand, L., Flaugher, M., Heller, R., Irwin, M., Swartz, C., Traub, S., Cooper, J. D., and Fedo, C. 1997. Neoproterozoic–Lower Cambrian sequence stratigraphy, eastern Mojave desert, California: Implications for base of the Sauk sequence, craton-margin hinge zone, and evolution of the Cordilleran continental margin, p. 120. In Girty, G. H., Hanson, R. E., and Cooper, J. D. (eds.), Geology of the Western Cordillera: Perspectives from Undergraduate Research. Pacific Section SEPM, Fullerton, California.Google Scholar
Bengtson, S., and Yue, Z. 1997. Fossilized metazoan embryos from the earliest Cambrian. Science, 277:16451646.Google Scholar
Bengtson, S., Conway Morris, S., Cooper, B. J., Jell, P. A., and Runnegar, B. N. 1990. Early Cambrian fossils from South Australia. Association of Australasian Palaeontologists Memoir, 9, 364 p.Google Scholar
Bhatt, D. K., Mamgain, V. D., and Misra, R. S. 1985. Small shelly fossils of early Cambrian (Tommotian) age from Chert-Phosphorite Member, Tal Formation, Mussoorie Syncline, Lesser Himalaya, India and their chronostratigraphic evaluation. Journal of the Palaeontological Society of India, 30:92102.Google Scholar
Brasier, M. D. 1990. Phosphogenic events and skeletal preservation across the Precambrian Cambrian boundary interval, p. 289303. In Notholt, A. J. G. and Jarvis, I. (eds.), Phosphorite Research and Development. Geological Society of London Special Publication, No. 52.Google Scholar
Brasier, M. D., and Lindsay, J. F. 2001. Did supercontinent amalgamation trigger the “Cambrian Explosion”?, p. 6989. In Zhuravlev, A. Y. and Riding, R. (eds.), The Ecology of the Cambrian Radiation. Columbia University Press, New York.Google Scholar
Brasier, M. D., and Singh, P. 1987. Microfossils and Precambrian Cambrian boundary stratigraphy at Maldeota, Lesser Himalaya. Geological Magazine, 124:323345.CrossRefGoogle Scholar
Briggs, D. E. G., and Wilby, P. R. 1996. The role of calcium carbonate-calcium phosphate switch in the mineralization of soft-bodied fossils. Journal of the Geological Society, London, 153:665668.Google Scholar
Chen, P. 1984. Discovery of Lower Cambrian small shelly fossils from Jijiapo, Yichang, West Hubei and its significance. Professional Papers of Stratigraphy and Palaeontology, 13:6164.Google Scholar
Cobbold, E. S. 1935. Lower Cambrian faunas from Hérault, France. Annals and Magazine of Natural History (series 10), 16:2548.Google Scholar
Cobbold, E. S., and Pocock, R. W. 1934. The Cambrian area of Rushton (Shropshire). Philosophical Transactions of the Royal Society of London, series B, 223:305409.Google Scholar
Conway Morris, S., and Bengtson, S. 1994. Cambrian predators: Possible evidence from boreholes. Journal of Paleontology, 68:123.Google Scholar
Conway Morris, S., and Chen, M. 1989. Lower Cambrian anabaritids from South China. Geological Magazine, 126:615632.Google Scholar
Conway Morris, S., and Chen, M. 1990. Blastulospongia polytreta n. sp., an enigmatic organism from the Lower Cambrian of Hubei, China. Journal of Paleontology, 64:2630.CrossRefGoogle Scholar
Conway Morris, S., and Chen, M. 1992. Carinachitiids, hexangulaconularids, and Punctatus: Problematic metazoans from the early Cambrian of South China. Journal of Paleontology, 66:384405.CrossRefGoogle Scholar
Conway Morris, S., and Fritz, W. H. 1980. Shelly microfossils near the Precambrian Cambrian boundary, Mackenzie Mountains, northwestern Canada. Nature, 286:381384.Google Scholar
Cook, P. J., and Shergold, J. H. 1984. Phosphorus, phosphorites, and skeletal evolution at the Precambrian Cambrian boundary. Nature, 308:231236.CrossRefGoogle Scholar
Crimes, P. T., and Anderson, M. M. 1985. Trace fossils from late Precambrian-Early Cambrian strata of southeastern Newfoundland (Canada); temporal and environmental implications. Journal of Paleontology, 59:310343.Google Scholar
Ding, W., and Qian, Y. 1988. Late Sinian to Early Cambrian small shelly fossils from Yangjiaping, Shimen, Hunan. Acta Micropalaeontologica Sinica, 5:3956.Google Scholar
Dong, X.-P., Donoghue, P. C. J., Cheng, H., and Liu, J. 2004. Fossil embryos from the Middle and Late Cambrian Period of Hunan, South China. Nature, 427:237240.Google Scholar
Donovan, S. K. 1987. The fit of the continents in the late Precambrian. Nature, 327:138141.CrossRefGoogle Scholar
D'Orbigny, A. 1842. Paléontologie Francaise. Text and Atlas. Masson, Paris, 662 p.Google Scholar
Dzik, J. 1994. Evolution of “small shelly fossils” assemblages of the Early Paleozoic. Acta Palaeontological Polonica, 39:247313.Google Scholar
Elicki, O. 1998. First report of Halkieria and enigmatic globular fossils from the Central European Marianian (Lower Cambrian, Gorlitz Syncline, Germany), p. 5164. In Gamez, V., Antonio, J., Palacios, T. et al. (eds.), Special Issue in Memory of Professor Gonzalo Vidal. Revista Espanola de Paleontologia, Special Issue.Google Scholar
Fritz, W. H., Narbonne, G. M., and Gordey, S. P. 1983. Strata and trace fossils near the Precambrian Cambrian boundary, Mackenzie, Selwyn, and Wernecke Mountains, Yukon and Northwest territories. Current Research, Pt. B, Geological Survey of Canada, Paper 83–1B:365375.Google Scholar
Germs, G. J. B. 1972. New shelly fossils from the Nama Group, South West Africa. American Journal of Science, 272:752761.Google Scholar
Gravestock, D. I., Alexander, E. M., Demidenko, Y. E., Esakova, N. V., Holmer, L. E., Jago, J. B., Lin, T., Melnikova, L. M., Parkhaev, P. Y., Rozanov, A. Y., Ushantinskaya, G. T., Zang, W. et al. 2001. The Cambrian Biostratigraphy of the Stansbury Basin, South Australia. Nauka/Interperiodica, Moscow, 343 p.Google Scholar
Grotzinger, J. P., Watters, W. A., and Knoll, A. H. 2000. Calcified metazoans in thrombolitic stromatolite reefs of the terminal Proterozoic Nama Group, Namibia. Paleobiology, 26:334359.2.0.CO;2>CrossRefGoogle Scholar
Hagadorn, J. W., and Waggoner, B. 2000. Ediacaran fossils from the southwestern Great Basin, United States. Journal of Paleontology, 74:349359.Google Scholar
Hamdi, B. 1989. Stratigraphy and palaeontology of the Late Precambrian to Early Cambrian in the Alborz Mountains, northern Iran. Geological Survey of Iran Report, 59:141.Google Scholar
He, T., and Xie, Y. 1989. Some problematic small shelly fossils from the Meishucunian of the Lower Cambrian in the western Yangtze region. Acta Micropalaeontologica Sinica, 6:111127.Google Scholar
Hofmann, H. J., and Mountjoy, E. W. 2001. Namacalathus–Cloudina assemblage in Neoproterozoic Miette Group (Byng Formation), British Columbia: Canada's oldest shelly fossils. Geology, 29:10911094.2.0.CO;2>CrossRefGoogle Scholar
Huang, B., Zhu, R., Yang, O., and Yang, Z. 2000. The Early Paleozoic paleogeography of the North China block and other major blocks of China. Chinese Science Bulletin, 45:10571065.Google Scholar
Kerber, M. 1988. Mikrofossilien aus unterkambrishchen Gesteinen der Montagne Noire, Frankreich. Palaeontolographica, A202:127203.Google Scholar
Khomentovsky, V. V., and Karlova, G. A. 1993. Biostratigraphy of the Vendian–Cambrian beds and the Lower Cambrian boundary in Siberia. Geological Magazine, 130:2945.Google Scholar
Knoll, A. H., and Carroll, S. B. 1999. Early animal evolution: Emerging views from comparative biology and geology. Science, 284:21292137.Google Scholar
Kouchinsky, A., and Bengtson, S. 2002. The tube wall of Cambrian anabaritids. Acta Palaeontologica Polonica, 47:431444.Google Scholar
Kouchinsky, A., Bengtson, S., and Gershwin, L. 1999. Cnidarian-like embryos associated with the first shelly fossils in Siberia. Geology, 27:609612.Google Scholar
Kumar, G., Bhatt, D. K., and Raina, B. K. 1987. Skeletal microfauna of Meishucunian and Qiongzhusian (Precambrian-Cambrian boundary) age from the Ganga Valley, Lesser Himalaya, India. Geological Magazine, 124:167171.CrossRefGoogle Scholar
Li, G., and Qian, Y. 1999. A review of the research on the phosphatized spheroidal fossils in China. Acta Micropalaeontologica Sinica, 16:287296.Google Scholar
Loutit, T. S., Hardenbol, J., Vail, P. R., and Baum, G. R. 1988. Condensed sections; the key to age determination and correlation of continental margin sequences, p. 183213. In Wilgus, C. K., Hastings, B. S., Ross, C. A. et al. (eds.), Sea-level changes; an integrated approach. SEPM Special Publication, 42.Google Scholar
Luo, H., Jiang, Z., Wu, X., Song, X., Ouyang, L. et al. 1982. The Sinian–Cambrian Boundary in Eastern Yunnan. People's Publishing House, Yunnan, 265 p.Google Scholar
Martin, D., Briggs, D. E. G., and Parkes, R. J. 2003. Experimental mineralization of invertebrate eggs and the preservation of Neoproterozoic embryos. Geology, 31:3942.Google Scholar
McIlroy, D., and Szaniawski, H. 2000. A lower Cambrian protoconodont apparatus from the Placentian of southeastern Newfoundland. Lethaia, 33:95102.Google Scholar
McMenamin, M. A. S. 1982. A case for two late Proterozoic–earliest Cambrian faunal province loci. Geology, 10:290292.Google Scholar
Miller, J. F. 1984. Cambrian and earliest Ordovician conodont evolution, biofacies, and provincialism, p. 4368. In Clark, D. L. (ed.), Conodont Biofacies and Provincialism. Geological Society of America Special Paper, 196.Google Scholar
Missarzhevsky, V. V. 1969. Description of hyolithids, gastropods, hyolithelminths, camenids and forms of an obscure taxonomic position, p. 105175. In Rozanov, A. Y. et al. (eds.), The Tommotian Stage and the problem of the lower boundary of the Cambrian. Amerind Publishing, New Delhi, Trudy Akademiya Nauk SSSR.Google Scholar
Missarzhevsky, V. V. 1973. Conodont-shaped organisms from Precambrian-Cambrian boundary strata of the Siberian Platform and Kazakhstan, p. 5357. In Zhuralev, I. T. (ed.), Problemy paleontologii i biostratigrafii nizhnego kembriya Sibiri i Dal'nego vostoko. Trudy Instituta Geologii i Geofiziki SO AN SSSR, 49.Google Scholar
Missarzhevsky, V. V. 1977. Conodonts(?) and phosphatic problematica from the Cambrian of Mongolia and Siberia, p. 1019, 91, 100, 106. In Tatarinov, L. P., Luvsandansan, B., Voronin, Y. I. et al. (eds.), Bespozvonochnye Paleozoya Mongolii, Trudy-Sovmestnaya Sovetsko-Mongol'skaya Paleontologicheskaya Ekspeditsiya.Google Scholar
Missarzhevsky, V. V. 1989. The oldest skeletal fossils and stratigraphy of the Precambrian Cambrian boundary beds. Trudy Geologiceskogo Instituta AN SSSR, 443:1237.Google Scholar
Missarzhevsky, V. V., and Mambetov, A. J. 1981. Stratigraphy and fauna of Cambrian and Precambrian boundary beds of Maly Karatau. Trudy Akademii Nauka SSSR, Moscow, 326.Google Scholar
Mount, J. F., and Kidder, D. 1993. Combined flow origin of edgewise intraclast conglomerates; Sellick Hill Formation (Lower Cambrian) South Australia. Sedimentology, 40:315329.Google Scholar
Narbonne, G. M. 1994. New Ediacaran fossils from the Mackenzie Mountains, northwestern Canada. Journal of Paleontology, 68:411416.CrossRefGoogle Scholar
Narbonne, G. M., and Aitken, J. D. 1995. Neoproterozoic of the Mackenzie Mountains, northwestern Canada. Precambrian Research, 73:101121.CrossRefGoogle Scholar
Nowlan, G. S., Narbonne, G. M., and Fritz, W. H. 1985. Small shelly fossils and trace fossils near the Precambrian Cambrian boundary in the Yukon Territory, Canada. Lethaia, 18:233256.Google Scholar
Osborne, D. T., Narbonne, G. M., and Carrick, J. 1986. Stratigraphic and economic potential of Precambrian Cambrian boundary strata, Wernecke Mountains, east-central Yukon. Yukon Geology, 1:131138.Google Scholar
Pelechaty, S. M. 1996. Stratigraphic evidence for the Siberia-Laurentia connection and Early Cambrian rifting. Geology, 24:719722.Google Scholar
Porter, S. M. 2004. Closing the phosphatization window: Testing for the influence of taphonomic megabias on the pattern of small shelly fossil decline. Palaios, 19:178183.Google Scholar
Pyle, L. J., Narbonne, G. M., James, N. P., Dalrymple, R. W., and Kaufman, A. J. 2004. Integrated Ediacaran chronostratigraphy, Wernecke Mountains, northwestern Canada. Precambrian Research, 132:127.CrossRefGoogle Scholar
Qian, Y. 1977. Hyolitha and some problematica from the Lower Cambrian Meishucunian Stage in central and southwestern China. Acta Palaeontologica Sinica, 16:255275.Google Scholar
Qian, Y., and Bengtson, S. 1989. Palaeontology and biostratigraphy of the Early Cambrian Meishucunian Stage in Yunnan Province, South China. Fossils and Strata, 24:1156.Google Scholar
Qian, Y., Chen, M., and Chen, Y. 1979. Hyolithids and other small shelly fossils from the Lower Cambrian Huangshandong Formation in the eastern part of the Yangtze Gorge. Acta Palaeontologica Sinica, 18:207232.Google Scholar
Qian, Y., Li, G., He, T., and Xie, Y. 2001. Helmet-like fossils from the basal Cambrian phosphoric strata of China. Acta Palaeontologica Sinica, 40:486496.Google Scholar
Sears, J. W., and Price, R. A. 2000. New look at the Siberian connection: No SWEAT. Geology, 28:423426.Google Scholar
Sokolov, B. S., and Zhuraleva, I. T. 1983. Lower Cambrian Stage Subdivision of Siberia, Atlas of Fossils. Trudy Instituta Geologii i Geofiziki SO AN SSSR 558, Moscow, 216 p.Google Scholar
Steiner, M., Zhu, M., Li, G., Qian, Y., and Erdtmann, B.-D. 2004a. New Early Cambrian bilaterian embryos and larvae from China. Geology, 32:833836.Google Scholar
Steiner, M., Li, G., Qian, Y., and Zhu, M. 2004b. Lower Cambrian small shelly fossils of northern Sichuan and southern Shaanxi (China), and their biostratigraphic importance. Geobios, 37:259275.Google Scholar
Szaniawski, H. 1982. Chaetognath grasping spines recognized among Cambrian protoconodonts. Journal of Paleontology, 56:806810.Google Scholar
Szaniawski, H. 2002. New evidence for the protoconodont origin of chaetognaths. Acta Palaeontologica Polonica, 47:405419.Google Scholar
Valentine, J. W. 2002. Prelude to the Cambrian explosion. Annual Review of Earth and Planetary Sciences, 30:285306.Google Scholar
Val'kov, A. K. 1987. Lower Cambrian Biostratigraphy of the Eastern Siberian Platform. Nauka, Moscow, 137 p.Google Scholar
van Waveren, I. M. 1993. Morphology of Recent copepod egg envelopes from Turkey Point, Gulf of Mexico, and their implications for acritarch affinity, p. 111124. In Molyneux, S. G. and Dorning, K. J. (eds.), Contributions to Acritarch and Chitinozoan Research. Special Papers in Paleontology, 48.Google Scholar
Voronin, Y. I., Voronova, L. G., Grigorieva, N. V., Drosdova, N. A., Shegallo, E. A., Zhuravlev, A. Y., Ragozina, A. L., Rozanov, A. Y., Sayutina, T. A., Syssoiev, V. A., and Fonin, V. D. 1982. The Precambrian/Cambrian boundary in the Geosynclinal areas (The reference section of Salany-Gol, MPR). Transactions of the Joint Soviet-Mongolian Palaeontological Expedition, 18, Nauka Izdatelstvo, Moscow, 150 p.Google Scholar
Wray, G. A., Levinton, J. S., and Shapiro, L. H. 1996. Molecular evidence for deep Precambrian divergences among metazoan phyla. Science, 274:568573.Google Scholar
Wrona, R. 2004. Cambrian microfossils from glacial erratics of King George Island, Antarctica. Acta Palaeontologica Polonica, 49:1356.Google Scholar
Xiao, S., and Knoll, A. H. 1999. Fossil preservation in the Neoproterozoic Duoshanto phosphorite Lagerstätte, South China. Lethaia, 32:219240.Google Scholar
Xiao, S., and Knoll, A. H. 2000. Phosphatized animal embryos from the Neoproterozoic Duoshantuo Formation at Weng'an, Guizhou, South China. Journal of Paleontology, 74:767788.Google Scholar
Xiao, S., Yuan, X., and Knoll, A. H. 2000. Eumetazoan fossils in terminal Proterozoic phosphorites? Proceedings of the National Academy of Sciences, USA, 97:1368413689.Google Scholar
Xiao, S., Zhang, Y., and Knoll, A. H. 1998. Three-dimensional preservation of algae and animal embryos in a Neoproterozoic phosphorite. Nature, 391:553558.Google Scholar
Xing, Y., Ding, Q., Luo, H., He, T., and Wang, Y. 1984. The Sinian–Cambrian boundary of China and its related problems. Geological Magazine, 121:155170.Google Scholar
Yin, C., Bengtson, S., and Yue, Z. 2004. Silicified and phosphatized Tianzhushania, spheroidal microfossils of possible animal origin from the Neoproterozoic of South China. Acta Palaeontologica Polonica, 49:112.Google Scholar
Young, C. M., Sewell, M. A., and Rice, M. E. 2002. Atlas of Marine Invertebrate Larvae. Academic Press, San Diego, 626 p.Google Scholar
Yue, Z., and Bengtson, S. 1999. Embryonic and post-embryonic development of the Early Cambrian cnidarian Olivooides . Lethaia, 32:181195.Google Scholar
Yue, Z., and He, T. 1989. A restudy of some Early Cambrian small shelly fossils from Ganluo and Emei, Sichuan, Southwest China. Acta Micropalaeontologica Sinica, 6:389407.Google Scholar
Yue, Z., and Zhao, J.-X. 1993. Meischucunian (Early Cambrian) rodlike fossils from western Zhejiang. Acta Micropalaeontologica Sinica, 10:8997.Google Scholar
Zhang, X., and Pratt, B. R. 1994. Middle Cambrian arthropod embryos with blastomeres. Science, 266:637639.Google Scholar
Zhou, C., Brasier, M. D., and Xue, Y. 2001. Three-dimensional phosphatic preservation of giant acritarchs from the terminal Proterozoic Duoshantuo Formation in Guizhou and Hubei provinces, South China. Palaeontology, 44:11571178.Google Scholar