Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-25T09:57:23.233Z Has data issue: false hasContentIssue false

Earliest Ordovician (Early to Middle Tremadocian) radiolarian faunas of the Cow Head Group, western Newfoundland

Published online by Cambridge University Press:  20 May 2016

Mun-Zu Won
Affiliation:
Department of Marine Science, Pusan National University, Pusan 609-735, South Korea,
William J. Iams
Affiliation:
Environmental Science/Studies, Sir Wilfred Grenfell College, Memorial University of Newfoundland, University Drive, Corner Brook, Newfoundland, Canada A2H 6P9,
Katherine Reed
Affiliation:
927 56th Street, Port Townsend, Washington 98368-1207, USA

Abstract

Well-preserved earliest Ordovician (early to middle Tremadocian) radiolarian faunas were recovered from carbonate rocks of the Cow Head Group of the Great Northern Peninsula of the island of Newfoundland, Canada. The earliest Ordovician faunal assemblages are from Green Point, Martin Point, Broom Point North and South, and St. Paul's Inlet in Gros Morne National Park. Latest Cambrian faunas were also recovered from Green Point and St. Paul's Inlet, but are extremely low in both abundance and diversity. The radiolarian faunas include five families, 10 genera, and 24 species. Of these, one family Aspiculumidae, one genus, and 19 species are new. The new family and new genus are Aspiculumidae and Aspiculum, respectively. The new species are Pararcheoentactinia? cowheadensis, Aspiculum eccentricum, Aspiculum? angulatum, Parechidnina delicata, P. variospina, Curvechidnina multiramosa, Echidnina conexa, E. laxa, E. semiconexa, E. severedeformis, Echidnina? immanis, Palaeospiculum curvum, P. multifurcatum, P. neofurcatum, P. tetractium, Protoentactinia deformis, P. kozuriana, P. primigena, and P. transformis. The Aspiculumidae is established on the basis of the new genus Aspiculum and on Parechidnina, whose family-level assignments were previously indeterminate. The new family Aspiculumidae is distinguished from the other four families by the absence of the spicule system.

All genera of the earliest Ordovician radiolarian faunas can be placed in the families Aspiculumidae, Archeoentactiniidae, Echidninidae, Palaeospiculumidae, and Protoentactiniidae, as can the genera of the Cambrian radiolarian faunas. However, echidninids from Cambrian faunas are generally characterized by interlocked or fused spicules whose original structure is recognizable, while those from the earliest Ordovician are commonly characterized by fused and/or modified spicules. Also, the very rare protoentactinids of the Late Cambrian are extremely abundant and diverse in the earliest Ordovician faunas described herein. Specimens of the families Palaeospiculumidae and Archaeoentactinidae are less diverse and/or less plentiful in the earliest Ordovician compared to those in Cambrian. The genus Parechidnina, which now belongs to Aspiculumidae, is more plentiful and very diverse in the earliest Ordovician, and, at the same time, lineages of the new genus Aspiculum and a related not-yet-named genus began to evolve.

The detailed biostratigraphic ages of the earliest Ordovician radiolarian faunas were determined mainly by the co-occurring conodonts. The age range of the earliest Ordovician faunas represented extends from the Cordylodus lindstromi Zone through the C. angulatus Zone to the Rossodus manitouensis Zone.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aitchison, J. C. 1998. A Lower Ordovician (Arenig) radiolarian fauna from the Ballantrae Complex, Scotland. Scottish Journal of Geology, 34(1):7381.Google Scholar
Aitchison, J. C., Flood, P. G., and Malpas, J.. 1998. Lowermost Ordovician (basal Tremadoc) radiolarians from the Little Port Complex, western Newfoundland. Geological Magazine, 135(3):413419.CrossRefGoogle Scholar
Barnes, C. R. 1988. The proposed Cambrian–Ordovician global boundary stratotype and point (GSSP) in western Newfoundland, Canada. Geological Magazine, 125(4):381414.Google Scholar
Bagnoli, G., Barnes, C. R., and Stevens, R. K.. 1987. Tremadocian conodonts from Broom Point and Green Point, western Newfoundland. Bollettino della Societa Paleontologica Italiano, 25:145158.Google Scholar
Bengtson, S. 1986. Siliceous microfossils from the Upper Cambrian of Queensland. Alcheringa, 10(3–4):195216.Google Scholar
Branson, E. B., and Mehl, M. G.. 1933. Conodont studies, numbers 1 and 2. University of Missouri Studies, 19(3), 535 p.Google Scholar
Buckman, S., and Aitchison, J. C.. 2001. Middle Ordovician (Llandeilan) radiolarians from West Junggar, Xinjiang, China. Micropaleontology, 47(4):359367.CrossRefGoogle Scholar
Cooper, R. A., Nowlan, G. S., and Williams, S. H.. 2001. Global stratotype section and point for base of the Ordovician System. IUGS Bulletin Episodes, 24(1):1928.Google Scholar
Danelian, T. 1999. Taxonomic study of Ordovician (Llanvirn–Caradoc) Radiolaria from the Southern Uplands (Scotland, U. K.). Geodiversitas, 21:625635.Google Scholar
Danelian, T., and Clarkson, E. N. K.. 1998. Ordovician Radiolaria from bedded cherts of the Southern Uplands. Scottish Journal of Geology, 34:133137.Google Scholar
Danelian, T., and Floyd, J.. 2001. Ordovician siliceous biodiversity from the Southern Uplands, Scotland. Transactions of the Royal Society of Edinburgh (Earth Sciences), 91:489498.Google Scholar
Druce, E. C., and Jones, P. J.. 1971. Cambro–Ordovician conodonts from the Burke River structural belt, Queensland. Australia Bureau of Mineral Resources Bulletin, 110, 167 p.Google Scholar
Dunham, J. B., and Murphy, M. A.. 1976. An occurrence of well preserved Radiolaria from the Upper Ordovician (Caradocian), Eureka County, Nevada. Journal of Paleontology, 50(5):882887.Google Scholar
Ehrenberg, C. G. 1838. Über der Bildung der Kreidefelsen und des Kreidemergels durch unsichtbare Organismen. Abhandlungen der Königlichen Akademie des Wissenschaften zu Berlin, Jahrgang, 1838:59147.Google Scholar
Ehrenberg, C. G. 1875. Fortsetzung der mikrogeologischen Studien als Gesammt-Uebersicht der mikroskopischen Palälontolgie gleichartig analysirter Gebirgsarten der Erde, mit specieller Rücksicht auf den Polycystinen-Mergel von Barbados. Abhandlungen der Königlichen Akademie des Wissenschaften zu Berlin, Jahrgang, 1875:1226.Google Scholar
Erdtmann, B. D. 1988. The earliest Ordovician nematophorid gratolites: taxonomy and correlation. Geological Magazine, 125(4):327348.Google Scholar
Fortey, R. A., and Holdsworth, B. K.. 1972. The oldest known well-preserved Radiolaria. Bollettino della Societa Paleontologia Italiana, 10(1):3541.Google Scholar
Furnish, W. M. 1938. Conodonts from the Prairie du Chien (Lower Ordovician) beds of the upper Mississippi Valley. Journal of Paleontology, 12:318340.Google Scholar
Górka, H. 1994. Late Caradoc and early Ludlow Radiolaria from Baltic erratic boulders. Acta Palaeontologica Polonica, 39(2):169179.Google Scholar
Goto, H., and Ishiga, H.. 1991. Study of Late Ordovician radiolarians from the Lachlan Fold Belt, southeastern Australia. Geological Reports of Shimane University, 10:5762.Google Scholar
Goto, H., Umeda, M., and Ishiga, H.. 1992. Middle Ordovician radiolarians from the Lachlan fold belt, southeastern Australia. Memoirs of the Faculty of Science, Shimane University, 26:131140.Google Scholar
Holdsworth, B. K. 1977. Paleozoic Radiolaria: Stratigraphic distribution in Atlantic borderlands, p. 167184. In Swain, F. M. (ed.), Stratigraphic Micropaleontology of Atlantic Basin and Borderlands. Developments in Paleontology and Stratigraphy, 6, Elsevier.Google Scholar
James, N. J., and Stevens, R. K.. 1986. Stratigraphy and correlation of the Cambro–Ordovician Cow Head Group, western Newfoundland. Bulletin of Geological Survey of Canada, 336, 143 p.Google Scholar
Kozur, H. W., and Repetski, J. E.. 2002. Paulanoblella, nomen novum (Radiolaria) replaces Noblella Kozur, Mostler & Repetski, 1996, a homonym of Noblella Barbour, 1930 (Amphibia). Journal of Micropalaeontology, 21(1):28.Google Scholar
Kozur, H. W., Mostler, H., and Repetski, J. E.. 1996. Well-preserved Tremadocian primitive Radiolaria from the Windfall Formation of the Antelope Range, Eureka County, Nevada, U.S.A. Geologisch-Palaeontologisch Mitteilungen Innsbruck, 21:245271.Google Scholar
Landing, E., Westrop, S. R., and Knox, L. A.. 1996. Conodonts, stratigraphy, and relative sea-level changes of the Tribes Hill Formation (Lower Ordovician, east-central New York). Journal of Paleontology, 70(4):656680.Google Scholar
Li, H.-S. 1995. New genera and species of Middle Ordovician Nassellaria and Albaillellaria from Bai-jingsi, Quilian Mountains, China. Scientia Geologica Sinica, 4(3):331346.Google Scholar
Li, Y., Jia, C., Hao, J., Wang, Z., Zheng, D., and Peng, G.. 2000. Radiolarian fauna found from Tieshiedas Group in east Kunlun. Chinese Science Bulletin, 45(10):943946.Google Scholar
Lindström, M. 1955. Conodonts from the lowermost Ordovician strata of south-central Sweden. Gelogiska Föreningen I Stockholm Förhandlingar, 76:517604.Google Scholar
Lindström, M. 1971. Lower Ordovician conodonts of Europe, p. 2161. In Sweet, W. C. and Bergstrom, S. M. (eds.), Symposium on Conodont Biostratigraphy. Geological Society of America Memoir, 127.Google Scholar
Löfgren, A. 1996. Arenig (Lower Ordovician) conodonts, reworking, and biostratigraphy of the Orreholmen quarry, Västergötland, south-central Sweden. Geologiska Föreningens Stockholm, Förhandlingar, 118:169183.Google Scholar
Miller, J. F. 1969. Conodont fauna of the Notch Peak Limestone (Cambro–Ordovician), House Range, Utah. Journal of Paleontology, 43:413439.Google Scholar
Müller, K. J. 1959. Kambrische Conodonten. Zeitschrift der deutschen geologischen Gesellschaft, 111:39485.Google Scholar
Müller, K. J. 1964. Conodonten aus dem unteren Ordovizium von Südkorea. Neues Jahrbuch für Geologie und Palaeontolgie Abhandlungen, 119:93102.Google Scholar
Nazarov, B. B. 1975. Radiolaria of the Lower–Middle Paleozoic of Kazakstan. Trudy Akademiia NAUK SSSR, Geologic Institute, 275, 203 p. (In Russian)Google Scholar
Nazarov, B. B. 1977. A new radiolarian family from the Ordovician of Kazakhstan. Paleontologicheskiy Zhurnal, 11(2):165171.Google Scholar
Nazarov, B. B., and Ormiston, A. R.. 1984. Tentative system of Paleozoic Radiolaria, p. 6487. In Petrushevskaya, M. G. and Stepanjants, S. D. (eds.), Morphology, Ecology and Evolution of Radiolaria (Eurorad IV Symposium Volume, October 1984). Zoologic Institute, Leningrad, Nauka. (In Russian with English summary)Google Scholar
Nazarov, B. B., and Ormiston, A.. 1986. Trends in the development of Paleozoic Radiolaria. Marine Micropaleontology, 11:332.Google Scholar
Nazarov, B. B., and Ormiston, A.. 1993. New biostratigraphically important Paleozoic Radiolaria of Eurasia and North America, p. 2260. In Blueford, J. R. and Murchey, B. (eds.), Radiolaria of Giant and Subgiant Fields in Asia. Micropaleontology, Special Publication, Number 6.Google Scholar
Nazarov, B. B., and Popov, L. E.. 1976. Radiolarians, inarticulate brachiopods and organisms of uncertain systematic position from the Middle Ordovician of eastern Kazakhstan. Paleontologicheskiy Zhurnal, 4:3342.Google Scholar
Nazarov, B. B., and Popov, L. E.. 1980. Stratigrafiya i fauna Kremnis-to-Karbonatnykh tolshch ordovika kazakhstana; radiolarii i bezzamkovye brakhiopody [Stratigraphy and fauna of the siliceous-carbonate sequence of the Ordovician of Kazakhstan; radiolarians and inarticulate brachiopods]. Trudy Geologicheskiy Institut Akademiya Nauk SSR, 331, 190 p. (In Russian)Google Scholar
Noble, P., and Aitchison, J.. 2000. Early Paleozoic radiolarian biozonation. Geology, 28(4):367370.Google Scholar
Nogami, Y. 1967. Kambrische Conodonten von China, Teil 2. Kyoto University, College of Science Memoir, series B, 32:351366.Google Scholar
Pander, C. H. 1856. Monographie der fossilen Fische des Silurischen Systems der Russisch-Baltishen Gouvernements. Königlische Akademie der Wissenschaften, St. Petersburg, 91 p.Google Scholar
Renz, G. W. 1990a. Late Ordovician (Caradocian) radiolarians from Nevada. Micropaleontology, 36(4):367377.Google Scholar
Renz, G. W. 1990b. Ordovician Radiolaria from Nevada and Newfoundland: a comparison at the family level. Marine Micropaleontology, 15(3–4):393452.Google Scholar
Repetski, J. E., and Ethington, R. L.. 1983. Rossodus manitouensis (Conodonta), a new Early Ordovician index fossil. Journal of Paleontology, 57:289301.Google Scholar
Umeda, M. 2002. Taxonomy and diversity history of Paleozoic radiolarian; seven extinction events. Journal of Geography, 111(1):3354.Google Scholar
Umeda, M., and Ishiga, H.. 1992. Late Ordovician radiolarians from the Lachlan fold belt, southeastern Australia. Memoirs of the Faculty of Science, Shimane University, 26:145170.Google Scholar
Wang, Y. 1993. Middle Ordovician radiolarians from the Pingliang Formation of Gansu Province, China, p. 98114. In Blueford, J. R. and Murchey, B. (eds.), Radiolaria of Giant and Subgiant Fields in Asia. Micropaleontology, Special Publication, Number 6.Google Scholar
Webby, B. D., and Blom, W.. 1986. The first well-preserved radiolarians from the Ordovician of Australia. Journal of Paleontology, 60(1):145157.CrossRefGoogle Scholar
Won, M.-Z., and Below, R.. 1999. Cambrian radiolarians from the Georgina Basin, Queensland, Australia. Micropaleontology, 45(4):325363.Google Scholar
Won, M.-Z., and Iams, W. J.. 2002. Late Cambrian radiolarian faunas and biostratigraphy of the Cow Head Group, western Newfoundland. Journal of Paleontology, 76(1):133.Google Scholar
Won, M.-Z., Blodgett, R. B., and Nestor, V.. 2002. Llandoverian (Early Silurian) radiolarians from the Road River Formation of east-central Alaska and the new family Haplotaeniatumidae. Journal of Paleontology, 76(6):941964.Google Scholar