Skip to main content Accessibility help
×
Home

Athenacrinus n. gen. and other early echinoderm taxa inform crinoid origin and arm evolution

  • Thomas E. Guensburg (a1), James Sprinkle (a2), Rich Mooi (a3), Bertrand Lefebvre (a4), Bruno David (a5) (a6), Michel Roux (a7) and Kraig Derstler (a8)...

Abstract

Intermediate morphologies of a new fossil crinoid shed light on the pathway by which crinoids acquired their distinctive arms. Apomorphies originating deep in echinoderm history among early nonblastozoan pentaradiate echinoderms distinguish Tremadocian (earliest Ordovician) crinoid arms from later taxa. The brachial series is separated from the ambulacra, part of the axial skeleton, by lateral plate fields. Cover plates are arrayed in two tiers, and floor plates expressed podial basins and pores. Later during the Early Ordovician, floor plates contacted and nestled into brachials, then were unexpressed as stereom elements entirely and cover plates were reduced to a single tier. Incorporation of these events into a parsimony analysis supports crinoid origin deep in echinoderm history separate from blastozoans (eocrinoids, ‘cystoids’). Arm morphology is exceptionally well-preserved in the late Tremadocian to early Floian Athenacrinus broweri new genus new species. Character analysis supports a hypothesis that this taxon originated early within in the disparid clade. Athenacrinus n. gen. (in Athenacrinidae new family) is the earliest-known crinoid to express what is commonly referred to as ‘compound’ or ‘biradial’ morphology. This terminology is misleading in that no evidence for implied fusion or fission of radials exists, rather it is suggested that this condition arose through disproportionate growth.

UUID: http://zoobank.org/b383e039-3298-4472-a7e3-e81684f87cfe

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Athenacrinus n. gen. and other early echinoderm taxa inform crinoid origin and arm evolution
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Athenacrinus n. gen. and other early echinoderm taxa inform crinoid origin and arm evolution
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Athenacrinus n. gen. and other early echinoderm taxa inform crinoid origin and arm evolution
      Available formats
      ×

Copyright

This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

References

Hide All
Ausich, W.I., 2018, Morphological paradox of disparid crinoids (Echinodermata): phylogenetic analysis of a Paleozoic clade: Swiss Journal of Palaeontology, v. 137, p. 159176, doi:10.1007/s13358-018-0147-z.
Ausich, W.I., and Rozhnov, S.V., 2017, Iocrinid crinoids from the Ordovician of the Baltic Region, Estonia: Paleontological Journal, v. 49, p. 145152, doi:10.1134/0031030115020069.
Ausich, W.I., Kammer, T.W., Wright, D., Cole, S., Peters, M., and Rhenberg, E., 2015a, Toward a phylogenetic classification of the Crinoidea (Echinodermata), in Zamora, S., and Romano, I., eds., Progress in Echinoderm Paleobiology: Instituto Geológico y Minero de España Cuaderno del Museo Geominero, v. 19, p. 2932.
Ausich, W.I., Kammer, T.W., Rhenberg, E.C., and Wright, D.F., 2015b, Early phylogeny of crinoids within the pelmatozoan clade: Palaeontology, v. 58, p. 937952, doi:10.1111/pala.12204.
Billings, E., 1857, New species of fossils from Silurian rocks of Canada: Canada Geological Survey Report of Progress 1853–1856, p. 247345.
Billings, E., 1859, Crinoidea of the lower Silurian rocks of Canada: Geological Survey of Canada, Canadian Organic Remains, Decade 4, p. 1–72.
Blakey, D., 2019, Deep time maps: Maps of ancient Earth: https://deeptimemaps.com/ (accessed October 2019).
Branson, E.B., and Peck, R.E., 1940, A new cystoid from the Ordovician of Oklahoma: Journal of Paleontology, v. 14, p. 8992.
Breimer, A., 1978, General morphology, Recent crinoids, in Moore, R.C., and Teichert, C., eds., Treatise on Invertebrate Paleontology, Part T, Echinodermata 2(1): Boulder, Colorado, and Lawrence, Kansas, Geological Society of America (and University of Kansas), p. T9T58.
Brower, J.C., 1966, Functional morphology of Calceocrinidae with description of some new species: Journal of Paleontology, v. 40, p. 613634.
Brower, J.C., 1992, Cupulocrinid crinoids from the Middle Ordovician (Galena Group, Dunleith Formation) of northern Iowa and southern Minnesota: Journal of Paleontology, v. 66, p. 99128.
Brower, J.C., 1994, Camerate crinoids from the Middle Ordovician (Galena Group, Dunleith Formation) of northern Iowa and southern Minnesota: Journal of Paleontology, v. 68, p. 570599.
Brower, J.C., 2006, Ontogeny of the food-gathering system in Ordovician crinoids: Journal of Paleontology, v. 80, p. 430446, doi:10.1666/0022-3360(2006)80[430:OOTFSI]2.0.CO;2.
Brower, J.C., and Veinus, J., 1982, Long-armed cladid inadunates, in Sprinkle, J., ed., Echinoderm Faunas from the Bromide Formation (Middle Ordovician) of Oklahoma: University of Kansas Paleontological Contributions, Monographs, v. 1, p. 129144.
Callaway, C., 1877, On a new area of upper Cambrian rocks in South Shropshire, with a description of new fauna: Quarterly Journal of the Geological Society of London, v. 33, p. 652672.
Church, S.B., 1974, Lower Ordovician patch reefs in western Utah: Brigham Young University Geology Studies, v. 21, p. 4162.
Clark, A.H., and Clark, A.M., 1915, A monograph of the existing crinoids, Volume 1, The comatulids: Bulletins of the United States National Museum, Smithsonian Institution, v. 82, p. 1878.
Cole, S.R., 2017, Phylogeny and morphologic evolution of the Ordovician Camerata (class Crinoidea, phylum Echinodermata): Journal of Paleontology, v. 91, special issue 4, p. 815828, doi:10.1017/jpa.2016.137.
Dattilo, B.F., 1993, The Lower Ordovician Fillmore Formation of western Utah: Storm-dominated sedimentation on a passive margin: Brigham Young University Geology Studies, v. 39, p. 71100.
David, B., and Mooi, R., 1999, Comprendre les échinodermes: La contribution du modèle extraxial-axial: Bulletin de la Société Géologique de France, v. 170, p. 91101.
David, B., Lefebvre, B., Mooi, R., and Parsley, R., 2000, Are homalozoans echinoderms? An answer from the extraxial-axial theory: Paleobiology, v. 26, p. 529555, doi:10.1666/0094-8373(2000)026 < 0529:AHEAAF > 2.0.CO;2.
Derstler, K., Guensburg, T.E., Blake, D.B., and Sprinkle, J., 2018, Arms in Camptostroma, an archaic pentaradiate echinoderm: Geological Society of America Abstracts with Programs, v. 50: doi:10.1130/abs/2018AM-324634.
Donovan, S.K., and Cope, C.W., 1989, A new camerate crinoid from the Arenig of South Wales: Palaeontology, v. 32, p. 101107.
Durham, J.W., 1966, Camptostroma, an early Cambrian supposed scyphozoan referable to Echinodermata: Journal of Paleontology, v. 40, p. 12161220.
Durham, J.W., 1968, Camptostromatoids, in Moore, R.C., ed., Treatise on Invertebrate Paleontology, Part S, Echinodermata 1(2): New York, New York, and Lawrence, Kansas, Geological Society of America (and University of Kansas), p. S627S631.
Edwards, C.T., 2019, Links between early Paleozoic oxygenation and the Great Ordovician Biodiversification Event (GOBE): A review: Paleoworld, v. 28, p. 3750, doi:10.1016/j.palwor.2018.08.006.
Foerste, A.F., 1938, Echinodermata, in Resser, C.E, and Howell, B.F., eds., Lower Cambrian Olenellus Zone of the Appalachians: Geological Society of America Bulletin, v. 49, p. 195–248.
Geissman, J.W., Bowring, S.A., and Babcock, L.E., compilers, 2018, Geological Time Scale, v. 5.0: Geological Society of America, https://doi.org/10.1130/2018 (accessed January 2019).
Guensburg, T.E., 1984, Echinodermata of the Middle Ordovician Lebanon Limestone, central Tennessee: Bulletins of American Paleontology, v. 86, p. 1100.
Guensburg, T.E., 1992, Paleoecology of hardground encrusting and commensal crinoids, Middle Ordovician, Tennessee: Journal of Paleontology, v. 66, p. 129147.
Guensburg, T.E., 2010, Alphacrinus new genus and the origin of the disparid clade: Journal of Paleontology, v. 84, p. 12091216, doi:10.2307/40925993.
Guensburg, T.E., 2012, Phylogenetic implications of the oldest crinoids: Journal of Paleontology, v. 86, p. 455461, doi:10.2307/41480208.
Guensburg, T.E., and Sprinkle, J., 1994, Revised phylogeny and functional interpretation of the Edrioasteroidea based on new taxa from the Early and Middle Ordovician of western Utah: Fieldiana, Geology, new ser., no. 29, p. 143.
Guensburg, T.E., and Sprinkle, J., 2003, The oldest known crinoids (Early Ordovician, Utah), and a new crinoid plate homology system: Bulletins of American Paleontology, v. 364, p. 143.
Guensburg, T.E., and Sprinkle, J., 2007, Phylogenetic implications of the Protocrinoidea: Blastozoans are not ancestral to crinoids: Annales de Paléontologie, v. 93, p. 277290, doi:10.1016/j.annpal.2007.09.005.
Guensburg, T.E., and Sprinkle, J., 2009, Solving the mystery of crinoid ancestry: New fossil evidence of arm origin and development: Journal of Paleontology, v. 83, p. 350364, doi:10.1666/08-090.1.
Guensburg, T.E., and Sprinkle, J., 2017, New evidence of early hybocrinid tegmens; Phylogenetic implications: Geological Society of America Abstracts with Programs, paper (49-2). doi:1130/ABS/2017-ne291462.
Guensburg, T.E., Mooi, R., Sprinkle, J., David, B., and Lefebvre, B., 2010, Pelmatozoan arms from the mid-Cambrian of Australia: Bridging the gap between brachioles and arms? Comment: There is no bridge: Lethaia, v. 43, p. 432440, doi:10.1111.j.1502-3931.2010.00220.x.
Guensburg, T.E., Blake, D.B., Sprinkle, J., and Mooi, R., 2016, Crinoid ancestry without blastozoans: Acta Palaeontologica Polonica, v. 61, p. 253266, doi:10.4202/app.00211.2015.
Hall, J., 1847, Description of the organic remains of the Lower Division of the New York System: New York Geological Survey, Natural History of New York, Paleontology, v. 1, p. 1338.
Heinzeller, T., and Welsch, U., 1994, Crinoidea, in Harrison, F.W., and Chia, F.-S., eds., Microscopic Anatomy of the Invertebrates, Volume 14, Echinodermata: New York, Wiley-Liss, p. 9148.
Hintze, L.F., 1973, Lower and Middle Ordovician stratigraphic sections in the Ibex area, Millard County, Utah: Brigham Young University Geology Studies, v. 20, p. 3–36.
Hyman, L., 1955, The Invertebrates, Volume 4, Echinodermata: New York, McGraw-Hill, 761 p.
Jaekel, O., 1901, Über Carpoideen, eine neue Klasse von Pelmatozoen: Zeitschrift der Deutschen Geologischen Gesellschaft, v. 52, p. 661677.
Jobson, L., and Paul, C.R.C., 1979, Compagicrinus fenestratus, a new Lower Ordovician inadunate crinoid from North Greenland: Rapport Gronlands Geologiske Undersogelse, v. 91, p. 7181.
Kammer, T.W., Sumrall, C.D., Zamora, S., Ausich, W.I., and Deline, B., 2013, Oral region homologies in Paleozoic crinoids and other plesiomorphic pentaradial echinoderms: PLoS ONE, v. 8, p. 116, doi:10.1371/journal.pone.0077989.
Kolata, D.R., 1982, Camerates, in Sprinkle, J., ed., Echinoderm Faunas from the Bromide Formation (Middle Ordovician) of Oklahoma: University of Kansas Paleontological Contributions, Monographs, v. 1, p. 170–205.
Lane, N.G., 1970, Lower and Middle Ordovician crinoids from west-central Utah: Brigham Young University Geology Studies, v. 17, p. 317.
Meek, F.B., and Worthen, A.H., 1865, Description of new species of Crinoidea, etc., from the Palaeozoic rocks of Illinois and some of the adjoining states: Academy of Natural Sciences of Philadelphia, Proceedings, v. 17, p. 143155.
Miller, J.S., 1821, A Natural History of the Crinoidea or Lily-shaped Animals, with Observations on the Genera Asteria, Euryale, Comatula, and Marsupites: Bristol, UK, Bryan and Company, 150 p.
Mooi, R., and David, B., 1998, Evolution within a bizarre phylum: Homologies of the first echinoderms: American Zoologist, v. 38, p. 965974.
Mooi, R. and David, B., 2000, What a new model of skeletal homologies tells us about asteroid evolution: American Zoologist, v. 40, p. 326339, doi:10.1093/icb/40.3.326.
Mooi, R., David, B., and Wray, G., 2005, Arrays in rays: Terminal addition in echinoderms and its correlation with gene expression: Evolution and Development, v. 7, p. 542555, doi:10.1111/j.1525-142X.2005.05058.x.
Moore, R.C., 1962, Ray structures of some inadunate crinoids: University of Kansas Paleontological Contributions, Echinodermata, article 5, p. 1–47.
Moore, R.C., 1978, Order Disparida, in Moore, R.C., and Teichert, C., eds., Treatise on Invertebrate Paleontology, Part T, Echinodermata 2(2): Boulder, Colorado, and Lawrence, Kansas, Geological Society of America (and University of Kansas Press), p. T520T574.
Moore, R.C., and Laudon, L.R., 1943, Evolution and classification of Paleozoic crinoids: Geological Society of America, Special Papers, v. 46, p. 1153.
Nichols, D., 1960, The histology and activities of the tube-feet in Antedon bifida: Quarterly Journal of Microscopical Science, v. 101, p. 105117.
Öpik, A.A., 1934, Ristnacrinus, a new Ordovician crinoid from Estonia: Tartu Ülikooli Geoloogia Instituut Toimetused, v. 40, p. 17.
Parsley, R.D., 1982, Eumorphocystis, in Sprinkle, J., ed., Echinoderm Faunas from the Bromide Formation (Middle Ordovician) of Oklahoma: University of Kansas Paleontological Contributions, Monographs, v. 1, p. 280–288.
Parsley, R.D., and Mintz, L.W., 1975, North American Paracrinoidea (Ordovician: Paracrinozoa, new, Echinodermata): Bulletins of American Paleontology, v. 68, no. 288, p. 1115.
Paul, C.R.C., 1968, Macrocystella Callaway, the earliest glyptocystitid cystoid: Palaeontology, v. 11, p. 580600.
Paul, C.R.C., and Smith, A.B., 1984, The early radiation and phylogeny of echinoderms: Biological Reviews, v. 59, p. 443481.
Pompeckj, J.F., 1896, Die Fauna des Cambrium von Tejrovic und Skrej in Böhmen: Jahrbuch der Kaiserlich-königlichen Geologischen Reichsanstalt, v. 45, p. 495614.
Roux, M., and Lambert, P., 2011, Two new species of stalked crinoids from the northeastern Pacific in the genera Gephyrocrinus and Ptilocrinus (Echinodermata, Crinoidea, Hyocrinidae): Effects on ontogeny and variability on hyocrinid taxonomy: Zootaxa, v. 2825, p. 154.
Ruedemann, R., 1933, Camptostroma, a lower Cambrian floating hydrozoan: Proceedings of the United States National Museum, v. 82, p. 113.
Sheffield, S.L., and Sumrall, C.D., 2019a, A re-interpretation of the ambulacral system of Eumorphocystis (Blastozoa, Echinodermata) and its bearing on the evolution of early crinoids: Palaeontology, v. 62, p. 163173, doi:10.1111/pala.12396.
Sheffield, S.L., and Sumrall, C.D., 2019b, The phylogeny of the Diploporita: A polyphyletic assemblage of blastozoan echinoderms: Journal of Paleontology, doi:10.1017/pa.2019.2, 13 p.
Sinclair, G.W., 1945, Some Ordovician echinoderms from Oklahoma: American Midland Naturalist, v. 34, p. 707716.
Smith, A.B., and Jell, P.A., 1990, Cambrian edrioasteroids from Australia and the origin of starfishes: Memoirs of the Queensland Museum, v. 28, p. 715778.
Sprinkle, J., 1973, Morphology and evolution of blastozoan echinoderms: Museum of Comparative Zoology, Harvard University, Cambridge, Special Publications, p. 1–283.
Sprinkle, J., 1982a, Hybocrinus, in Sprinkle, J., ed., Echinoderm Faunas from the Bromide Formation (Middle Ordovician) of Oklahoma: University of Kansas Paleontological Contributions, Monographs, v. 1, p. 119–128.
Sprinkle, J., 1982b, Large-calyx cladid inadunates, in Sprinkle, J., ed., Echinoderm Faunas from the Bromide Formation (Middle Ordovician) of Oklahoma: University of Kansas Paleontological Contributions, Monographs, v. 1, p. 145–169.
Sprinkle, J., 1985, New edrioasteroid from the middle Cambrian of western Utah: University of Kansas Paleontological Contributions, Papers, v. 116, p. 1–4.
Sprinkle, J., and Sumrall, C.D., 2015, New edrioasterine and asterocystitid (Echinodermata: Edrioasteroidea) from the Ninemile Shale, central Nevada: Journal of Paleontology, v. 89, p. 346352, doi:10.1017/jpa.2014.29.
Strimple, H.L. 1953, A new species of Archaeocrinus from Oklahoma: Journal of Paleontology, v. 27, p. 604606.
Strimple, H.L., and McGinnis, M.R., 1972, A new camerate crinoid from the Al Rose Formation, Lower Ordovician of California: Journal of Paleontology, v. 46, p. 7274.
Sumrall, C.D., and Waters, J., 2012, Universal elemental homology in glyptocystitoids, hemicosmitoids, coronoids, and blastoids: Steps toward phylogenetic reconstruction in derived Blastozoa: Journal of Paleontology, v. 86, p. 956972, doi:10.2307/23353782.
Swofford, D.L., 2003, PAUP*, Phylogenetic Analysis Using Parsimony (*and Other Methods), Version 4: Sinauer Associates, Sunderland, Massachusetts, http://phylosolutions.com/paup-test/.
Taylor, M.E., and Miller, J.F., 1989, Late Cambrian and Early Ordovician stratigraphy and biostratigraphy, southern House Range (‘Ibex Area’), Utah, in Taylor, M.E., ed., Cambrian and Early Ordovician Stratigraphy and Paleontology of the Basin and Range Province, Western United States, International Geological Congress, 28th, Field Trip Guidebook T125: Washington, DC, American Geophysical Union, p. 45–58.
Termier, H., and Termier, G., 1949, Hiérarchie et corrélations des caractères chez les Crinoidea Fossils: Service Carte Géologie l'Algérie, Bulletin Séries 1, Paléontologie, no. 10, pt. 1, p. 1–90.
Ubaghs, G., 1953, Notes sur Lichenoides priscus Barrande, éocrinoïde du Cambrien moyen de la Tchécoslovaquie: Bulletin de l'Institut Royal des Sciences Naturelles de Belgique, v. 29, p. 124.
Ubaghs, G., 1963, Rhopalocystis destombesi n. g., n. sp., éocrinoïde de l'Ordovicien inférieur (Trémadocien supérieur) du Sud marocain: Notes et Mémoires du Service Géologique du Maroc, v. 23, p. 2545.
Ubaghs, G., 1967b, Le genre Ceratocystis Jaekel (Echinodermata, Stylophora). University of Kansas Paleontological Contributions, Papers, v. 22, p. 1–16.
Ubaghs, G., 1968 (“1967a”), Eocrinoidea, in Moore, R.C., ed., Treatise on Invertebrate Paleontology, Part S, Echinodermata 1(2): New York, New York, and Lawrence, Kansas, Geological Society of America (and University of Kansas), p. S455S495.
Ubaghs, G., 1969, Aethocrinus moorei Ubaghs, n. gen. n. sp, le plus ancien crinoïde dicyclique connu: University of Kansas Paleontological Contributions, Papers, v. 38, p. 125.
Ubaghs, G., 1978, Skeletal morphology of fossils crinoids, in Moore, R.C., and Teichert, C., eds., Treatise on Invertebrate Paleontology, Part T, Echinodermata 2(1): Boulder, Colorado, and Lawrence, Kansas, Geological Society of America (and University of Kansas), p. T58T216.
Ulrich, E.O., 1925, New classification of the Heterocrinidae: Canadian Geological Survey, Memoirs, v. 138, p. 82106.
Walcott, C.D., 1883 (“1884”), Descriptions of new species of fossils from the Trenton Group of New York: New York State Museum of Natural History, Annual Report 35, p. 207–214.
Warn, J.M., 1982, Long-armed disparid inadunates, in Sprinkle, J., ed., Echinoderm Faunas from the Bromide Formation (Middle Ordovician) of Oklahoma: University of Kansas Paleontological Contributions, Monographs, v. 1, p. 77–89.
Warn, J.M., and Strimple, H.L., 1977, The disparid inadunate superfamilies Homocrinacea and Cincinnaticrinacea (Echinodermata: Crinoidea), Ordovician–Silurian, North America: Bulletins of American Paleontology, v. 72, p. 1138.
Wright, D.F., 2017, Bayesian estimation of fossil phylogenies and the evolution of early to middle Paleozoic crinoids (Echinodermata): Journal of Paleontology, v. 91, special issue 4, p. 799814, doi:10.1017/jpa.2016.141.
Zamora, S., Lefebvre, B., Hosgör, I., Franzen, C., Nardin, E., Fatka, O., and Alvaro, J.J., 2015, The Cambrian edrioasteroid Stromatocystites: Systematics, palaeogeography, and palaeobiology: Geobios, v. 48, p. 417426, doi:10.1016/j.geobios.2015.07.004.
Zhao, Y., Sumrall, C.D., Parsley, R.D., and Peng, J., 2010, Kailidiscus, a new plesiomorphic edrioasteroid from the Kaili biota of Guizhou Province, China: Journal of Paleontology, v. 84, p. 668680, doi:10.1666/09-159.1.
Zhu, X.-J., Zamora, S., and Lefebvre, B., 2014, Morphology and paleoecology of a new edrioblastoid (Edrioasteroidea) from the Furongian of China: Acta Palaeontologica Polonica, v. 59, p. 921926, doi:10.4202/app.2012.0116.

Athenacrinus n. gen. and other early echinoderm taxa inform crinoid origin and arm evolution

  • Thomas E. Guensburg (a1), James Sprinkle (a2), Rich Mooi (a3), Bertrand Lefebvre (a4), Bruno David (a5) (a6), Michel Roux (a7) and Kraig Derstler (a8)...

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed