Skip to main content Accessibility help
×
Home
Hostname: page-component-5bf98f6d76-zn7qb Total loading time: 0.361 Render date: 2021-04-21T14:48:18.894Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Ontogenetic growth and variation in the skeletal structure of two Late Neogene Sphaeropyle species (Polycystina radiolarians)

Published online by Cambridge University Press:  20 May 2016

Noritoshi Suzuki
Affiliation:
Institute of Geology and Paleontology, Graduate School of Geoscience, Tohoku University, Sendai 980-8578, Japan, <norinori@mail.tains.tohoku.ac.jp>
Corresponding

Abstract

Two four-shelled species characterized by a pylome-bearing outermost shell—Sphaeropyle robusta and its descendant, Sphaeropyle langii—are selected for morphological study. Both species are morphologically identical to three-shelled Actinomma morphotypes, morphotypes A and B, respectively. Furthermore, the number of pores on half a circumference of the primary cortical shell, the distinguishing feature between Sphaeropyle robusta and Sphaeropyle langii, accounts for the same between Sphaeropyle robusta and morphotype A, and between Sphaeropyle langii and morphotype B. It suggests that the three-shelled morphotypes A and B are juvenile forms of the four-shelled Sphaeropyle robusta and Sphaeropyle langii, respectively. This is strongly supported by the same stratigraphic distributions of each pair. The quantitative analysis of morphological variations in both species also revealed that they have nearly identical morphology, except for the number of pores on half a circumference of the primary cortical shell. In addition, the size range of primary and secondary cortical shells and the range of the number of radial spines increase in Sphaeropyle langii, while the length range of radial spines decrease.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below.

References

Abelmann, A. 1990. Oligocene to Middle Miocene radiolarian stratigraphy of southern high latitudes from Leg 113, Sites 689–690, Maud Rise, p. 675708. In Baker, P. F. and Kennett, J. P. (eds.), Proceedings of the Ocean Drilling Program, Scientific Results. Ocean Drilling Program, College Station, Texas, 113.Google Scholar
Aita, Y., and Taketani, Y. 2001. Report of age diagnostic microfossils from some Neogene marine sediments in Fukushima Prefecture. Research Report of Fukushima Museum, 36, 53 p. (In Japanese) Google Scholar
Alexandrovich, J. M. 1992. Radiolarians from Sites 794, 795, and 797 (Japan Sea), p. 291307. In Tamaki, K. et al. (eds.), Proceedings of the Ocean Drilling Program, Scientific Results. Ocean Drilling Program, College Station, Texas, 127–128(1).Google Scholar
Anderson, O. R. 1983. Radiolaria. Springer-Verlag, New York, 355 p.CrossRefGoogle Scholar
Anderson, O. R., and Gupta, S. M. 1998. Evidence of binary division in mature central capsules of a collosphaerid colonial radiolarian: Implications for shell ontogenetic patterns in modern and fossil species. Palaeontologia Electronica, 1:113. (http://www.omnh.ou.edu/paleo/1998_1/anderson/issue1.htm)Google Scholar
Anderson, O. R., Nigrini, C., Boltovskoy, D., Takahashi, K., and Swanberg, N. R. 2000. Class Polycystinea, p. 9941022. In Lee, J. J., Leedale, G. F., and Bradbury, P. (eds.), An Illustrated Guide to the Protozoa (second edition). Organisms Traditionally Referred to as Protozoa, or Newly Discovered Groups. Society of Protozoologists, Lawrence, Kansas.Google Scholar
Anma, R., Kawakami, S., and Yamamoto, Y. 2002. Structural profile of the Nankai accretionary prism and Calyptogena colonies along the Shionomisaki submarine canyon: results of “SHINKAI” 6K#522 and #579 dives. JAMSTEC Journal of Deep Sea Research, 20:5975. (In Japanese) Google Scholar
Benson, R. N. 1966. Recent Radiolaria from the Gulf of California. , , 577 p.Google Scholar
Björklund, K. R. 1974. A rare skeleton form in Echinomma leptodermum (Spumellarina, Radiolaria). Sarsia, 56:4346.CrossRefGoogle Scholar
Blueford, J. R. 1982. Miocene actinommid Radiolaria from the equational Pacific. Micropaleontology, 28:189213.CrossRefGoogle Scholar
Campbell, A. S. 1954. Radiolaria, p., D11D163. In Moore, R. C. (ed.), Treatise on Invertebrate Paleontology. Pt. D. Protista 3. Protozoa (Chiefly Radiolaria and Tintinnina). Geological Society of America and University of Kansas Press, Lawrence.Google Scholar
Campbell, A. S., and Clark, B. L. 1944. Miocene radiolarian faunas from southern California. Geological Society of America Special Paper, 51, 76 p.Google Scholar
Casey, R. E., and Reynolds, R. A. 1980. Late Neogene radiolarian biostratigraphy related to magnetostratigraphy and paleoceanography with suggested cosmopolitan radiolarian datums. Cushman Foundation for Foraminiferal Research, special publication, 19:287300.Google Scholar
Chen, P. H. 1975. Antarctic radiolaria, p. 437513. In Hays, D. E. (ed.), Initial Reports of the Deep Sea Drilling Project. U.S. Government Printing Office, Washington, DC, 28.Google Scholar
Chitoku, T. 1984. IX. Radiolarian fossils, p. 8190. In The Research Group of “Takikawa Kaigyu” (ed.), Report on the Result of Research on “Takikawa Kaigyuu” (Sea Cow of Takikawa). Kosoku In'satsu Center, Education Commission in Takigawa City, Hokkaido. (In Japanese) Google Scholar
Cleve, P. T. 1899. Plankton collected by the Swedish expedition to Spitzbergen in 1898. Kongliga Svenska Vetenskaps-Akademiens Handlingar, 32(3), 51 p.Google Scholar
De Wever, P., Dumitrica, P., Caulet, J. P., Nigrini, C., and Caridroit, M. 2001. Radiolarians in the Sedimentary Record. Gordon and Breach Science, Amsterdam, 533 p.Google Scholar
Dogiel, V. A., and Reshetnyak, V. V. 1952. Materialy po radiolyariyam severo-zapadnoy chasti tikhogo okeana. Issledovaniia Dal'nevostochnykh Morei SSSR, 3:536. (In Russian) Google Scholar
Dreyer, F. 1889. Die Pylombildungen in vergleichend-anatomisher und entwicklungsgeschlechtlicher Beziehung, bei Proteisten überhaupt, nebst System und Beschreibung und der bis jetzt bekannten pylomischen Spumellarien. Jenaische Zeitschrift für Naturwissenschaft herausgegeben von der medizinisch-naturwissenschaftlichen Gessellschaft zu Jena, 23:77214. (In German) Google Scholar
Ehrenberg, C. G. 1854. Mikrogeologie. Voss, Leipzig, 374 p. (In German) Google Scholar
Ehrenberg, C. G. 1876. Forsetzung der Mikrogeologischen Studien als Gesammt Ubersicht der mikroskopischen Paläontologie gleichartig analysierter der Erde, mit specieller Rücksicht aus den Polycystien Mergel von Barbados. Physikalische Abhandlungen der Königlichen Akademie der Wissenschaften zu Berlin, 1875, 226 p. (In German) Google Scholar
Foreman, H. P. 1975. Radiolaria from the North Pacific, Deep Sea Drilling Project, Leg 32, p. 579676. In Larson, R. L. et al. (eds.), Initial Reports of the Deep Sea Drilling Project. U.S. Government Printing Office, Washington, DC, 32.Google Scholar
Haeckel, E. 1862. Die Radiolarien (Rhizopoda Radiolaria). Eine Monographie. Reimer, Berlin, 572 p. (In German) Google Scholar
Haeckel, E. 1882. Entwurf eines Radiolarien-Systems auf Grund von Studien der Challenger-Radiolarien. Jenaische Zeitschrift für Naturwissenschaft herausgegeben von der medizinisch-naturwissenschaftlichen Gessellschaft zu Jena, 15:418472. (In German) Google Scholar
Haeckel, E. 1887. Report on the Radiolaria collected by H.M.S. Challenger during the years 1873–1876. Report on the Scientific Results of the Voyage of H.M.S. Challenger during the year 1873–1876, Zoology, 18, 1, 803 p.Google Scholar
Hays, J. D. 1965. Radiolaria and late Tertiary and Quaternary history of Antarctic Seas, p. 124184. In Llano, G. A. (ed.), Biology of the Antarctic Seas II. Antarctic Research Series, 5.Google Scholar
Hays, J. D. 1970. The stratigraphy and evolutionary trends of Radiolaria in north Pacific deep-sea sediments. Geological Society of America Memoir, 126:185218.CrossRefGoogle Scholar
Hollande, A., and Enjumet, M. 1960. Cytologie, évolution et systématique des Sphaeroïdés (Radiolaires). Archives du Muséum National d'Histoire Naturelle, série 7, 7, 134 p. (In French) Google Scholar
Hülsemann, K. 1963. Radiolaria in plankton from the Arctic Drifting Station T-3, including the description of three new species. Arctic Institute of North America Technical Paper, 13:152.Google Scholar
Itaki, T., Ito, M., Narita, H., Ahagond, N., and Sakai, H. 2003. Depth distribution of radiolarians from the Chukchi and Beaufort seas, western Arctic. Deep-Sea Research, Pt. I, 50:15071522.CrossRefGoogle Scholar
Jorgensen, E. 1900. Protistenplankton aus dem Nordmeere in den Jahren 1897–1900. Bergens Museum, Bergen, p. 4598. (In German) Google Scholar
Jorgensen, E. 1905. The protist plankton and diatoms in bottom samples: Radiolaria, p. 49151. In Nurdgaard, O. (ed.), Hydrographical and Biological Investigation in Norwegian Fjords. Bergens Museum, Bergen.Google Scholar
Kamikuri, S., Nishi, H., Motoyama, I., and Saito, S. 2004. Middle Miocene to Pleistocene radiolarian biostratigraphy in the Northwest Pacific Ocean, ODP Leg 186. The Island Arc, 13:191226.CrossRefGoogle Scholar
Keany, J. 1979. Early Pliocene radiolarian taxonomy and biostratigraphy in the Antarctic region. Micropaleontology, 25:5074.CrossRefGoogle Scholar
Keany, J., and Kennett, J. P. 1975. Pliocene–Pleistocene radiolarian biostratigraphy and paleoclimatology at DSDP Site 278 on the Antarctic convergence, p. 757767. In Kennett, J. P. and Houtz, R. E. (eds.), Initial Reports of the Deep Sea Drilling Project. U.S. Government Printing Office, Washington, DC, 29.Google Scholar
Kling, S. A. 1973. Radiolaria from the eastern North Pacific, Deep Sea Drilling Project, Leg 18, p. 617671. In Kulm, L. D. and Huene, R. (eds.), Initial Reports of the Deep Sea Drilling Project. U.S. Government Printing Office, Washington, DC, 18.Google Scholar
Kozur, H., and Mostler, H. 1979. Beitrage zur Erforschung der mesozoischen Radiolarien. Teil III: Die Oberfamilien Actinommacea HAECKEL 1862 emend., Artiscacea HAECKEL 1882, Multiarcusellacea nov. der Spumellaria und triassische Nassellaria. Geologisch-Paläontologische Mitteilungen Innsbruck, 9(1/2), 132 p. (In German) Google Scholar
Levyikina, I. E. 1986. Stratigrafiya Neogenobykh otlozheniy severo-zapadnoy chasti tikhogo okeana po radiolyariyam. Ordena Trudovogo Krasnogo Zhameni Geologicheskiy Institut Akademiya Nauk SSSR, 413, 117 p. (In Russian) Google Scholar
Ling, H.-Y. 1992. Radiolarians from the Sea of Japan: Leg 128, p. 225236. In Piscotto, K. A. et al. (eds.), Proceedings of the Ocean Drilling Program, Scientific Results. Ocean Drilling Program, College Station, Texas, 127–128(1).Google Scholar
Ling, H.-Y., and Kobayashi, H. 1992. Geological significance of siliceous microfossils from Dogo, Oki Islands, p. 439447. In Ishizaki, K. and Saito, T. (eds.), Centenary of Japanese Micropaleontology. Terra Scientific, Tokyo.Google Scholar
Molina-Cruz, A. 1982. Radiolarians in the Gulf of California: Deep Sea Drilling Project Leg 64, p. 9831002. In Curray, J. R. et al. (eds.), Initial Reports of Deep Sea Drilling Project. U.S. Government Printing Office, Washington, DC, 64.Google Scholar
Morley, J. J. 1985. Radiolarians from the northwest Pacific, Deep Sea Drilling Project Leg 86, p. 399422. In Heath, C. R. et al. (eds.), Initial Reports of the Deep Sea Drilling Project. U.S. Government Printing Office, Washington, DC, 86.Google Scholar
Morley, J. J., and Nigrini, C. 1995. Miocene to Pleistocene radiolarian biostratigraphy of North Pacific sites 881, 884, 885, 886, and 887, p. 5591. In Rea, D. K., Basov, I. A., School, D. W., and Allan, J. F. (eds.), Proceedings of the Ocean Drilling Program, Scientific Results. Ocean Drilling Program, College Station, Texas, 145.Google Scholar
Motoyama, I. 1993. Late Miocene and Pliocene radiolarian datum levels from DSDP Sites 192 and 302, and Hole 438A of the mid- to high-latitude NW Pacific. News of Osaka Micropaleontologists, special volume, 9:337347. (In Japanese) Google Scholar
Motoyama, I. 1996. Late Neogene radiolarian biostratigraphy in the subarctic Northwest Pacific. Micropaleontology, 42:221262.CrossRefGoogle Scholar
Motoyama, I., and Nakamura, S. 2002. Radiolarian biostratigraphy of the Miocene Masuporo and Wakkanai formations of the Uruyagawa section, Wakkanai, Hokkaido, Japan, with special reference to unconformity. Journal of Geological Society of Japan, 108:219234. (In Japanese) CrossRefGoogle Scholar
Nakaseko, K. 1955. Miocene radiolarian fossil assemblage from the southern Toyama Prefecture in Japan. Science Reports, South and North Colleges, Osaka University, 4:65127.Google Scholar
Nakaseko, K. 1972. On some species of genus Thecosphaera from the Neogene of Japan. Science Reports, College of General Education, Osaka University, 20(2):5966.Google Scholar
Nakaseko, K., and Nishimura, A. 1982. Radiolaria from the bottom sediments of the Bellingshausen Basin in the Antarctic Sea. Report of the Technology Research Center, J.N.O.C., 16:91244.Google Scholar
Nigrini, C. A. 1967. Radiolaria in pelagic sediments from the Indian and Atlantic oceans. Bulletin of the Scripps Institution of Oceanography, University of California, 11, 125 p.Google Scholar
Nishimura, A. 2003. The skeletal structure of Prunopyle antarctica Dreyer (Radiolaria) in sediment samples from the Antarctic Ocean. Micropaleontology, 49:197200.CrossRefGoogle Scholar
Petrushevskaya, M. G. 1967. Radiolayarii otryadov Spumellaria i Nassellaria Antarkicheskoi oblasti (po materialam Sovetskoi Antarkitcheskikh Ekspeditsii). Isslegovaniya Fauny Morei, IV (XII), Rezultaty Biologicheskikh Issledovanii Sovetskikh Antarkticheskikh Ekspeditsii, 1955–1958. Issledovanie Faunyi Morey, 3:5186. (In Russian) Google Scholar
Petrushevskaya, M. G. 1972. Nyekotoriye voprosi paleogeografii po materialam radiolyuarievogo analiza glubokovodnikh dommikhotolozhenii. Okeanologiya, 12:640652. (In Russian) Google Scholar
Petrushevskaya, M. G. 1975. Cenozoic radiolarians of the Antarctic, Leg 29, DSDP, p. 541675. In Kennett, J. P. and Houtz, R. E. (eds.), Initial Reports of the Deep Sea Drilling Project. U.S. Government Printing Office, Washington, DC, 29.Google Scholar
Petrushevskaya, M. G., and Kozlova, G. E. 1972. Radiolaria: Leg 14, Deep Sea Drilling Project, p. 459648. In Hays, D. E. et al. (eds.), Initial Reports of the Deep Sea Drilling Project. U.S. Government Printing Office, Washington, DC, 14.Google Scholar
Popofsky, A. 1912. Die Sphaerellarien des Warmwassergebietes. Deutsche Südpolar-Expedition 1901–1903. Zoologie II, 13:73159. (In German) Google Scholar
Popova, I. M. 1993. Significance and paleoecological interpretations of early–middle Miocene radiolarians from south Sakhalin, Russia. Micropaleontology, special publication, 6:161174.Google Scholar
Riedel, W. R. 1967. Subclass Radiolaria, p. 291298. In Harland, W. B. et al. (eds.), The Fossil Record. Geological Society of London, London.Google Scholar
Sakai, T. 1980. Radiolarians from sites 434, 435 and 436, Northwest Pacific, Leg 56, DSDP, p. 695733. In Scientific Party (ed.), Initial Reports of the Deep Sea Drilling Project. U.S. Government Printing Office, Washington, DC, 56–57.Google Scholar
Sanfilippo, A., and Riedel, W. R. 1980. A revised generic and suprageneric classification of the Artiscins (Radiolaria). Journal of Paleontology, 54:10081011.Google Scholar
Sharma, V., Singh, S., and Rawal, N. 1999. Early Middle Miocene Radiolaria from Nicobar islands, Northeast Indian Ocean. Micropaleontology, 45:251277.CrossRefGoogle Scholar
Shilov, V. V. 1995. Eocene–Oligocene radiolarians from Leg 145, North Pacific, p. 117132. In Rea, D. K., Basov, I. A., School, D. W., and Allan, J. F. (eds.), Proceedings of the Ocean Drilling Program, Scientific Results. Ocean Drilling Program, College Station, Texas, 145.Google Scholar
Spencer-Cervato, C., Lazarus, D. B., Beckmann, J.-P., Perch-Nielen, K. S., and Biolzi, M. 1993. New calibration of Neogene radiolarian events in the North Pacific. Marine Micropaleontology, 21:261293.CrossRefGoogle Scholar
Suzuki, N. 1998. Morphological terminology of spheroidal Polycystine (Radiolaria). News of Osaka Micropaleontologists, special volume, 11:251287. (In Japanese) Google Scholar
Suzuki, N. 2005. Physiological axopodial activity of Rhizosphaera trigonacantha Haeckel (spheroidal radiolarian Polycystina, Protista). Marine Micropaleontology, 54(3):141153.CrossRefGoogle Scholar
Suzuki, N., and Sugiyama, K. 2001. Regular axopodial activity of Diplosphaera hexagonalis Haeckel (spheroidal spumellarian, Radiolaria). Paleontological Research, 5:131140.Google Scholar
Taketani, Y., Aita, Y., Okada, Y., Oda, M., Hasegawa, S., Maruyama, T., and Nemoto, N. 1986. The research report of microfossils from the Taga Group, Hutaba area, Fukushima Prefecture, Japan. Research Report of Fukushima Museum, 12, 53 p. (In Japanese) Google Scholar
Taketani, Y., Aita, Y., Ono, T., Okada, Y., Hasegawa, S., Maruyama, T., Nemoto, N., Kurihara, S., and Takayanagi, Y. 1990. The geological age and paleoenvironment of Neogene of Joban Area. Research Report of Fukushima Museum, 20, 99 p. (In Japanese) Google Scholar
Tsoy, I. B., and Shastina, V. V. 1999. Kremninstyiy Mikroplankoton Neogena Yaponskogo Morya (Diatomen i Radiolyarii). Rossiyskaya Nauk Dal'nevostochnoe Otlodelenie, Tikhookeanskiy Okeanologicheskiy Institut. Dal'nauka, Vladivostok, 239 p. (In Russian) Google Scholar
Vitukhin, D. I. 1993. Raschlenenie kaynozoya dal'nego vostoka rossii po radiolyariyam. Rossiyskaya Akademiya Nauk Geologicheskiy Institute, 485, 104 p. (In Russian) Google Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 10 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 21st April 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Ontogenetic growth and variation in the skeletal structure of two Late Neogene Sphaeropyle species (Polycystina radiolarians)
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Ontogenetic growth and variation in the skeletal structure of two Late Neogene Sphaeropyle species (Polycystina radiolarians)
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Ontogenetic growth and variation in the skeletal structure of two Late Neogene Sphaeropyle species (Polycystina radiolarians)
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *