Skip to main content Accessibility help
×
Home
Hostname: page-component-768dbb666b-jrcft Total loading time: 0.588 Render date: 2023-02-04T10:18:56.311Z Has data issue: true Feature Flags: { "useRatesEcommerce": false } hasContentIssue true

Hyolithellus in life position from the Lower Cambrian of North Greenland

Published online by Cambridge University Press:  14 July 2015

Christian B. Skovsted
Affiliation:
1Department of Palaeozoology, Swedish Museum of Natural History, Box 50007, SE-104 05 Stockholm, Sweden, 2Department of Earth Sciences, Palaeobiology Program, Uppsala University, Villavägen 16, SE-752 36 Uppsala, Sweden,
John S. Peel
Affiliation:
2Department of Earth Sciences, Palaeobiology Program, Uppsala University, Villavägen 16, SE-752 36 Uppsala, Sweden,

Abstract

Tubular specimens belonging to Hyolithellus from silty dolostones of the basal Aftenstjernesø Formation of North Greenland may represent the first occurrence of this widespread Cambrian fossil in life position. A high proportion of preserved specimens are oriented normal to bedding with the tapering end of the tube down. Occasional undulations in the growth of the tubes indicate that the animal actively adjusted its growth to achieve a vertical orientation in relation to the sediment surface. Increasing thickness of the tube wall towards the tapering end shifted the center of mass downwards and resulted in greater stability in the sediment. The tube remained open at both ends throughout ontogeny; it was most likely secreted by an annelid-grade animal which pumped water into the sediment through the tube. Hyolithellus and similar tubular fossils from the Lower Cambrian probably represent stem group annelids.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barnes, R. O. 1965. Tube-building and feeding in chaetopterid polychaetes. Biological Bulletin, 129:217233.CrossRefGoogle Scholar
Bengtson, S., Conway Morris, S., Cooper, B. J., Jell, P. A., and Runnegar, B. N. 1990. Early Cambrian fossils from South Australia. Association of Australasian Palaeontologists, Memoir 9, 364 p.Google Scholar
Billings, E. 1871. On some new species of Palaeozoic fossils. Canadian Naturalist, 6:213233, 240 p.Google Scholar
Bischoff, C. G. O. 1989. Byroniida new order from early Palaeozoic strata of eastern Australia (Cnidaria, thecate scyphopolyps). Senkenbergiana lethaea, 59:275327.Google Scholar
Blaker, M. R. and Peel, J. S. 1997. Lower Cambrian trilobites from North Greenland. Meddelelser om Grønland, Geoscience, 35, 145 p.Google Scholar
Brasier, M. D. and Hewitt, R. A. 1979. Environmental setting of fossiliferous rocks from the uppermost Proterozoic-Lower Cambrian of central England. Palaeogeography, Palaeoclimatology, Palaeoecology, 27:3557.CrossRefGoogle Scholar
Briggs, D. E. G., Erwin, D. H., and Collier, F. J. 1994. The fossils of the Burgess Shale. Smithsonian Institution Press, Washington and London, 238 p.Google Scholar
Cobbold, E. S. 1921. The Cambrian horizons of Comley (Shropshire) and their Brachiopoda, Pteropoda, Gasteropoda, etc. Quarterly Journal of the Geological Society of London, 76:325386.CrossRefGoogle Scholar
Conway Morris, S. 1977. Fossil priapulid worms. Special Papers in Palaeontology, 20, 95 p.Google Scholar
Conway Morris, S. 1998. The Crucible of Creation. The Burgess Shale and the Rise of Animals. Oxford University Press, Oxford, New York and Melbourne, 242 p.Google Scholar
Dzik, J. 1994. Evolution of “small shelly fossils” assemblages of the Early Paleozoic. Acta Palaeontologica Polonica, 39:247313.Google Scholar
Esakova, N. V. and Zhegallo, E. A. 1996. Biostratigrafiya i fauna nizhnego kembriya Mongolii. Trudy, Sovmestnaya Rossiysko-Mongol'skaya paleontologicheskaya ekspeditsiya, 46, 214 p. (In Russian).Google Scholar
Fisher, D. W. 1962. Other small conoidal shells, p. W98W143. In Moore, R. C. (ed.), Treatise on Invertebrate Paleontology. Miscellanea. Geological Society of America and University of Kansas Press, Lawrence.Google Scholar
Germs, J. G. B. 1972. New shelly fossils from the Nama Group, South West Africa. American Journal of Science, 272:752761.CrossRefGoogle Scholar
Grant, S. W. F. 1990. Shell structure and distribution of Cloudina, a potential index fossil for the terminal Proterozoic. American Journal of Science, 290:261294.Google ScholarPubMed
Hall, J. 1847. Palaeontology of New York, Volume 1, containing descriptions of the organic remains of the lower division of the New-York system. Geological Survey of the State of New York, C. van Benthuysen and Sons, Albany, 338 p.Google Scholar
Hinz, I. 1987. The Lower Cambrian microfauna of Comley and Rushton, Shropshire/England. Palaeontographica Abteilung A, 198:41100.Google Scholar
Holm, G. 1893. Sveriges kambrisk-siluriska Hyolithidae och Conulariidae. Sveriges Geologiska Undersökning, Afhandlingar och Uppsatser C, 112, 172 p.Google Scholar
Hou, X., Aldridge, R. J., Bergström, J., Siveter, D. J., Siveter, D. J., and Feng, X. H. 2004. The Cambrian Fossils of Chengjiang, China. The Flowering of Early Animal Life. Blackwell Science Ltd., Malden, Massachusetts, 233 p.Google Scholar
Hou, X., Bergström, J., Wang, H., Feng, X. H., and Chen, J. 1999. The Chengjiang fauna—exceptionally well-preserved animals from 530 million years ago. Yunnan Science and Technology Press, Kunming, 170 p.Google Scholar
Hua, H., Pratt, B. R., and Zhang, L. 2003. Borings in Cloudina Shells: Complex Predator-Prey Dynamics in the Terminal Neoproterozoic. Palaios, 18:454459.2.0.CO;2>CrossRefGoogle Scholar
Hua, H., Chen, Z., Yuan, X., Zhang, L., and Xiao, S. 2005. Skeletogenesis and asexual reproduction in the earliest biomineralizing animal Cloudina . Geology, 33:277280.CrossRefGoogle Scholar
Ineson, J. R. and Peel, J. S. 1997. Cambrian shelf stratigraphy of North Greenland. Geology of Greenland Survey Bulletin, 173:1120.Google Scholar
Johnston, P. A., Johnston, K. J., Collom, C. J., Powell, W. G., and Pollock, R. J. 2009. Palaeontology and depositional environments of ancient brine seeps in the Middle Cambrian Burgess Shale at The Monarch, British Columbia, Canada. Palaeogeography, Palaeoclimatology, Palaeoecology, 277:86105.CrossRefGoogle Scholar
Kiel, S. and Dando, P. R. 2009. Chaetopterid tubes from vent and seep sites: Implications for fossil record and evolutionary history of vent and seep annelids. Acta Palaeontologica Polonica, 54:443448.CrossRefGoogle Scholar
Landing, E. 1991. Upper Precambrian through Lower Cambrian of Cape Breton Island: Faunas, paleoenvironment and stratigraphic revision. Journal of Paleontology, 65:570594.CrossRefGoogle Scholar
Landing, E. 1993. In situ earliest Cambrian tube worms and the oldest metazoan-constructed biostrome (Placentian Series, Southeastern Newfoundland). Journal of Paleontology, 67:333342.CrossRefGoogle Scholar
Landing, E. and Bartowski, K. E. 1996. Oldest shelly fossils from the Taconic allochthon and late Early Cambrian sea-levels in eastern Laurentia. Journal of Paleontology, 70:741761.CrossRefGoogle Scholar
Landing, E., Geyer, G., and Bartowski, K. E. 1996. Latest Early Cambrian small shelly fossils, trilobites, and Hatch Hill dysaerobic interval on the Que'bec continental slope. Journal of Paleontology, 76:287305.CrossRefGoogle Scholar
Landing, E., Johnson, S. C., and Geyer, G. 2008. Faunas and Cambrian volcanism on the Avalonian marginal platform, southern New Brunswick. Journal of Paleontology, 82:884905.CrossRefGoogle Scholar
Lochman, C. 1956. Stratigraphy, paleontology, and paleogeography of the Elliptocephala asaphoides strata in Cambridge and Hoosick Quadrangles, New York. Bulletin of the Geological Society of America, 67:13311396.CrossRefGoogle Scholar
Maas, A., Huang, D., Chen, J., Waloszek, D., and Braun, A. 2007. Maotianshan-Shale nemathelminths – morphology, biology, and the phylogeny of Nemathelminthes. Palaeogeography, Palaeoclimatology, Palaeoecology, 254:288306.CrossRefGoogle Scholar
Malinky, J. and Yochelson, E. 2007. On the systematic position of the Hyolitha (Kingdom Animalia). Association of Australasian Palaeontologists, Memoir, 34:521536.Google Scholar
Malinky, J. and Skovsted, C. B. 2006. Hyoliths and small shelly fossils from the Lower Cambrian of North-East Greenland. Acta Palaeontologia Polonica, 49:551578.Google Scholar
Malinky, J., Wilson, M. A., Holmer, L. E., and Lardeux, H. 2004. Tube-shaped Incertae Sedis , p. 214222. In Webby, B. D., Paris, F., Droser, M. L., and Percival, I. G. (eds.), The Great Ordovician Biodiversification Event. Columbia University Press, New York.Google Scholar
Matthew, G. F. 1899. Studies on Cambrian faunas, no. 3: Upper Cambrian fauna of Mt. Stephen, British Columbia. Transactions of the Royal Society of Canada, Series 2, 5:3966.Google Scholar
Missarzhevsky, V. V. 1989. Drevnejshie skeletnye okamenelosti i stratigrafiya pogranichnykh tolshch dokembriya i kembriya. Trudy Akademia Nauk SSSR, 443, 238 p. (In Russian).Google Scholar
Peel, J. S. 2010. A corset-like fossil from the Cambrian Sirius Passet Lagerstätte of North Greenland and its implications for cycloneuralian evolution. Journal of Paleontology, 84:332340.CrossRefGoogle Scholar
Peel, J. S. and Sonderholm, M. 1991. Sedimentary basins of North Greenland. Grønlands Geologiske Undersøgelse Bulletin, 160, 164 p.Google Scholar
Peng, J., Babcock, L. E., Zhao, Y., Wang, P., and Wang, R. 2005. Cambrian Sphenothallus from Guizhou Province, China: Early sessile predators. Palaeogeography, Palaeoclimatology, Palaeoecology, 220:119127.CrossRefGoogle Scholar
Poulsen, C. 1932. The Lower Cambrian faunas of East Greenland. Meddelelser om Grønland, 87, 66 p.Google Scholar
Poulsen, V. 1974. Olenellacean trilobites from eastern North Greenland. Bulletin of the Geological Society of Denmark, 23:79101.Google Scholar
Qian, Y. and Bengtson, S. 1989. Palaeontology and biostratigraphy of the Early Cambrian Meishucunian Stage in Yunnan Province, South China. Fossils and Strata, 24:1156.Google Scholar
Repina, L. N., Lazarenko, N. P., Meshkova, N. P., Korshunov, V. I., Nikiforov, N. I., and Aksarina, N. A. 1974. Biostratigrafiya i fauna nizhnego kembriya Kharaulacha (khr. Tuora-Sis). Trudy Instituta Geologii i Geofiziki Akademiya Nauk SSSR Sibirskoe otdelnie, 235, 299 p. (In Russian).Google Scholar
Rozanov, A. Yu., Missarzhevsky, V. V., Volkova, N. A., Voronova, L. C., Krylov, I. N., Keller, B. M., Korolyuk, I. K., Lendzion, K., Michniak, R., Pykhova, N. G., and Sidorov, A. D. 1969. Tommotskij yarus i problema nizhnej grantisy kembriya. Trudy Geologocheskogo Instituta Akademia Nauk SSSR, 206, 380 p. (In Russian).Google Scholar
Ruppert, E. E., Fox, R. S., and Barnes, R. D. 2004. Invertebrate Zoology (7th edition). Thomson Learning, Belmont, California, 963 p.Google Scholar
Siveter, D. J., Williams, M., Peel, J. S., and Siveter, D. J. 1996. Bradoriida (Arthropoda) from the early Cambrian of North Greenland. Transactions of the Royal Society of Edinburgh: Earth Sciences, 86:113121.CrossRefGoogle Scholar
Skovsted, C. B. 2006. Small shelly fauna from the late Early Cambrian Bastion and Ella Island Formations, North-East Greenland. Journal of Paleontology, 80:10871112.CrossRefGoogle Scholar
Skovsted, C. B. and Holmer, L. E. 2006. The Lower Cambrian brachiopod Kyrshabaktella and associated shelly fossils from the Harkless Formation, southern Nevada. GFF, 128: 327–37.CrossRefGoogle Scholar
Skovsted, C. B. and Peel, J. S. 2007. Small shelly fossils from the argillaceous facies of the Lower Cambrian Forteau Formation of Western Newfoundland. Acta Palaeontologica Polonica, 52:729748.Google Scholar
Skovsted, C. B., Balthasar, U., Brock, G. A., and Paterson, J. R. 2009. The tommotiid Camenella reticulosa from the lower Cambrian of South Australia, scleritome reconstructions and tommotiid phylogeny. Acta Palaeontologica Polonica, 54:525540.CrossRefGoogle Scholar
Steiner, M., Li, G. X., Qian, Y., Zhu, M. Y., and Erdtmann, B. D. 2007. Neoproterozoic to Early Cambrian Small Shelly assemblages of the Yangtze Platform (China) and their potential for regional and international correlation. Palaeogeography, Palaeoclimatology, Palaeoecology, 254:6799.CrossRefGoogle Scholar
Syssoiev, V. A. 1968. Stratigrafiya i khiolity drevnejshikh sloev nizhnego kembriya Sibirskoj platformy. AN SSSR, Yakutskij filial Sibirskogo otdeleniya Instituta Geologii, Yakutsk, 67 p. (In Russian).Google Scholar
van Iten, H., Cox, R. S., and Mapes, R. H. 1992. New data on the morphology of Sphenothallus Hall: Implications for its affinities. Lethaia, 25:135144.CrossRefGoogle Scholar
van Iten, H., Zhu, M. Y., and Collins, D. 2002. First report of Sphenothallus Hall, 1847 in the Middle Cambrian. Journal of Paleontology, 76:902905.2.0.CO;2>CrossRefGoogle Scholar
Vinn, O. 2006. Possible cnidarian affinities of Torellella (Hyolithelminthes, Upper Cambrian, Estonia). Paläontologisches Zeitschrift, 80:383388.Google Scholar
Vinn, O. and Mutvei, H. 2009. Calcareous tubeworms of the Phanerozoic. Estonian Journal of Earth Sciences, 58:286296.CrossRefGoogle Scholar
Vinn, O., ten Howe, H. A., and Mutvei, H. 2008. On the tube ultrastructure and origin of calcification in sabellids (Annelida, Polychaeta). Palaeontology, 51:295301.CrossRefGoogle Scholar
Voronin, Yu. I., Voronova, L. G., Grigorieva, N. V., Drozdova, N. A., Zhegallo, E. A., Zhuravlev, A. Yu., Ragozina, A. L., Rozanov, A. Yu., Sayutina, T. A., Sysoev, V. A., and Fonin, V. D. 1982. Granitsa dokembriya v geosinklinal'nykh oblastyakh (opornyj razrez Salany-Gol, MNR). Trudy Sovmestnoj Sovetsko-Mongol'skoj Paleontologiecheskoj Ehkspeditsii, 18:1150. (In Russian).Google Scholar
Walcott, C. D. 1886. Second contribution to the studies on the Cambrian faunas of North America. Bulletin of the United States Geological Survey, 30, 369 p.Google Scholar
Walcott, C. D. 1889. Descriptive notes of new genera and species from the Lower Cambrian or Olenellus zone of North America. Proceedings of the United States National Museum, 12:3346.CrossRefGoogle Scholar
Walcott, C. D. 1911. Middle Cambrian annelids. Cambrian Geology and Paleontology. II. Smithsonian Miscellaneous Collections, 57:109134.Google Scholar
Weedon, M. J. 1994. Tube microstructure of Recent and Jurassic serpulid polychaetes and the question of the Palaeozoic ‘spirorbids’. Acta Palaeontologica Polonica, 39:115.Google Scholar
Wrona, R. 2004. Cambrian microfossils from glacial erratics of King George Island, Antarctica. Acta Palaeontologica Polonica, 49:1356.Google Scholar
Zhu, M. Y., van Iten, H., Cox, R. S., Zhao, Y. L., and Erdtmann, B. D. 2000. Occurrence of Byronia Matthew and Sphenothallus Hall in the Lower Cambrian of China. Paläontologisches Zeitschrift, 74:227238.CrossRefGoogle Scholar
33
Cited by

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Hyolithellus in life position from the Lower Cambrian of North Greenland
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Hyolithellus in life position from the Lower Cambrian of North Greenland
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Hyolithellus in life position from the Lower Cambrian of North Greenland
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *