Hostname: page-component-7c8c6479df-ph5wq Total loading time: 0 Render date: 2024-03-19T03:04:36.229Z Has data issue: false hasContentIssue false

Abderitid marsupials from the Miocene of Patagonia: An assessment of form, function, and evolution

Published online by Cambridge University Press:  20 May 2016

E. R. Dumont
Affiliation:
1Department of Anatomy, Northeastern Ohio Universities College of Medicine, Rootstown, Ohio 44272
S. G. Strait
Affiliation:
2Department of Biological Sciences, Marshall University, Huntington, West Virginia 25755
A. R. Friscia
Affiliation:
3Department of Organismal Biology, Ecology, and Evolution, University of California, Los Angeles, California 90035

Abstract

Abderitid marsupials are common in vertebrate-bearing deposits from the middle Miocene of Argentine Patagonia. Recent collections from the inland Pinturas Formation and slightly younger coastal Santa Cruz Formation have dramatically increased the number of abderitid specimens. These new collections permit a re-assessment of abderitid taxonomy as well as an investigation of the dietary habits of these unique small mammals. The vast majority of new specimens represent Abderites meridionalis; Pithiculites minimus is rare. Patterns of macrowear on the double-bladed, plagiaulacoid shearing complex suggest that abderitids used these teeth to prepare a variety of resistant food items as do modern marsupials with double-bladed shearing systems. Data summarizing molar-shearing morphology and body size further suggest that A. meridionalis was a frugivore. The diet of the small P. minimus is equivocal, although it may represent a mixed feeder (frugivore/faunivore). A comparison of relative species richness and dietary adaptation between abderitids and palaeothentids (a closely related caenolestoid family that lacks the highly specialized shearing complex of abderitids) reveals distinct evolutionary patterns within the two lineages. Abderitids exhibit low species diversity. In contrast, palaeothentids are represented by 17 species, lack highly specialized shearing mechanisms, and typically exhibit molar morphologies that range from frugivory to faunivory and include mixed feeders. Both temporal and geographic variation are introduced as possible factors affecting differences in the relative abundance of abderitids and palaeothentids in the Pinturas and Santa Cruz Formations.

Type
Research Article
Copyright
Copyright © The Paleontological Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ameghino, F. 1887. Enumeración sistemática de las especies de mammíferos fóssiles coleccionados por Cárlos Ameghino en los terranos eocenos de la Patagonia austral y depositados en el Museo La Plata. Boletin Museo de La Plata, 1:126.Google Scholar
Ameghino, F. 1889. Contribución al conocimiento de los mammíferos fóssiles de la República Argentina, obra escrita bajo los auspicios de la Acadamia Nacional de Ciencias de la República Argentina para preentarla a la Exposicion Universal de Paris de 1889. Acta Academia de las Ciencias de Córdoba, 6:11027.Google Scholar
Ameghino, F. 1890. Los plagiaulacideos argentinos y sus relaciones zoológicas, geológicas y geográficas. Instituto Geográfico Argentino, Boletín, 11:143201.Google Scholar
Ameghino, F. 1891a. Mamiferos y aves fósiles argentinas. Especies neuvas, adiciones y correciones. Revista Argentina de Historia Natural, 1:240259.Google Scholar
Ameghino, F. 1891b. Nuevos restos de mammíferos fóssiles descubiertos por Cárlos Ameghino en el Eocene inferior de la Patagonia austral. Especies neuvas, adiciones y correciones. Revista Argentina de Historia Natural, 1:289328.Google Scholar
Ameghino, F. 1893. Les premier mammiféres. Rélations entre les mammiféres diprotodontes éocénes de l'Amerique de Nord et ceux de la République Argentine. Revue génerale Sciences (Paris), 4:7781.Google Scholar
Ameghino, F. 1894. Enuméracion synoptique des éspecies de mammifères fossiles des formations éocénes de Patagonie. Boletin de Academia de Ciencias Córdoba, 13:259452.Google Scholar
Ameghino, F. 1898. Sinopsis geológico-paleontológica. Segundo censo de la Republique Argentina. Fol., Beunos Aires, 1:112255.Google Scholar
Ameghino, F. 1902a. L'age des formations sédimentaires de Patagonia. Anales de Sociedad de Ciencias argentinas, 54:161180, 220–249, 283–342.Google Scholar
Ameghino, F. 1902b. Premiére contribution à la connaissance de la faune mammalogique des couches à Colpodon. Academia Nacional de Ciencas de Córdoba, Boletín, 17:71141.Google Scholar
Ameghino, F. 1903. Los diprotodontes del orden de los plagiaulacoideos y el origen de los roedores y de los polimastodontes. Anales del Museo Nacional, Ser. 3, 1:81192.Google Scholar
Ameghino, F. 1904. Paleontologia argentina. Publicaciones de la Universidad de La Plata. Facultad de Ciencias Físico-matemáticas, 2:179.Google Scholar
Ameghino, F. 1906. Les formations sédimentaires du Crétacé supérieur et du Tertiare de Patagonie avec un paralléle entre leurs faunes mammaligiques et celles de l'ancien continent. Anales del Museo Nacional, Ser. 3, 8:1568.Google Scholar
Anderson, D. K., Damuth, J., and Bown, T. M. 1995. Rapid morpholgical change in Miocene marsupials and rodents associated with a volcanic catastrophe in Argentina. Journal of Vertebrate Paleontology, 15(3):640649Google Scholar
Biknevicius, A. R. 1986. Dental function and diet in the carpolestidae (Primates, Plesiadapiformes). American Journal of Physical Anthropology, 71:157171.CrossRefGoogle Scholar
Bown, T. M., and Fleagle, J. G. 1993. Systematics, biostratigraphy, and dental evolution of the Palaeothentidae, later Oligocene to early-middle Miocene (Deseadan-Santacrucian) caenolestoid marsupials of South America. The Paleontological Society Memoir, 29, 76 p.Google Scholar
Bown, T. M., and Larriestra, C. N. 1990. Sedimentary paleoenvironments of fossil platyrrhine localities, Miocene Pinturas Formation, Santa Cruz Province, Argentina. Journal of Human Evolution, 19:87119.CrossRefGoogle Scholar
Bown, T. M., and Rose, K. D. 1987. Patterns of dental evolution in early Eocene Anaptomorphine primates (Omomyidae) from the Bighorn Basin, Wyoming. The Paleontological Society Memoir, 23, 162 p.Google Scholar
Burbidge, A. A., Johnson, K. A., Fuller, P. J., and Southgate, R. I. 1988. Aboriginal knowledge of the mammals of the central deserts of Australia. Australian Wildlife Research, 15:939.CrossRefGoogle Scholar
Christensen, P. E. S. 1980. The biology of Bettongia penicillata (Gray, 1837) and Macropus eugenii (Desmarest, 1817) in relation to fire. Bulletin of the Forests Department of Western Australia, 91:190.Google Scholar
Craig, S. A. 1985. Social organization, reproduction, and feeding behaviour of a population of yellow-bellied gliders, Petaurus australis (Marsupialia: Petauridae). Australian Wildlife Research, 12:118.CrossRefGoogle Scholar
Damuth, J., and Macfadden, B. J. 1990. Body Size in Mammalian Paleobiology: Estimation and Biological Implications. Cambridge University Press, Cambridge, 397 p.Google Scholar
Dimpel, H., and Calaby, J. H. 1972. Further observations on the mountain pygmy possum (Burramys parvus). Victorian Naturalist, 89(4):101106.Google Scholar
Dumont, E. R., and Bown, T. M. 1997. New caenolestoid marsupials, p. 207212. In Kay, R. F., Madden, R. H., Cifelli, R. L., and Flynn, J. J. (eds.), Vertebrate Paleontology in the Neotropics: The Miocene Fauna of La Venta, Colombia. Smithsonian Institution Press, Washington, 592 p.Google Scholar
Flannery, T. 1995. Mammals of New Guinea. Cornell University Press, Ithaca, 568 p.Google Scholar
Fleagle, J. G. 1978. Size distributions of living and fossil primate faunas. Paleobiology, 4:6776.CrossRefGoogle Scholar
Fleagle, J. G., Bown, T. M., Swisher, C., and Buckley, G. 1995. Age of the Pinturas and Santa Cruz formations. VI Congreso Argentino de Paleontologia y Biostratigragia, Actas:129135, Trelew.Google Scholar
Flynn, J. J., Guerrero, J., and Swisher, C. A. 1997. Geochronology of the Honda Group, p. 4466. In Kay, R. F., Madden, R. H., Cifelli, R. L., and Flynn, J. J. (eds.), Vertebrate Paleontology in the Neotropics: The Miocene Fauna of La Venta, Colombia. Smithsonian Institution Press, Washington, 592 p.Google Scholar
Gibson, D. F., and Cole, J. R. 1992. Aspects of the ecology of the mulgara Dasycercus cristicauda, (Marsupialia: Dasyuridae) in the Northern Territory. Australian Mammalogy, 15:105112.CrossRefGoogle Scholar
Illiger, C. 1811. Prodromus systematis mammalium et avium additis terminis zoographicis utrudque classis. C. Salfeld, Berlin, 301 p.CrossRefGoogle Scholar
Jungers, W. L. 1990. Problems and methods in reconstructing body size in fossil primates, p. 103118. In Damuth, J. and MacFadden, B. J. (eds.), Body Size in Mammalian Paleobiology: Estimation and Biological Implications. Cambridge University Press, Cambridge.Google Scholar
Kay, R. F. 1975. The functional adaptations of primate molar teeth. American Journal of Physical Anthropology, 42:195215.CrossRefGoogle Scholar
Kay, R. F. 1984. On the use of anatomical features to infer foraging behavior in extinct primates, p. 2153. In Rodman, P. S. and Cant, J. G. H. (eds.), Adaptations for Foraging in Nonhuman Primates: Contributions to an Organismal Biology of Prosimians, Monkeys, and Apes. Colombia University Press, New York, 351 p.CrossRefGoogle Scholar
Kay, R. F., and Covert, H. H. 1986. Anatomy and behavior of extinct primates, p. 467508. In Chivers, D. J., Wood, B. A., and Bilsborough, A. (eds.), Food Acquisition and Processing in Primates. Plenum Press, New York, 576 p.Google Scholar
Kay, R. F., and Hiiemae, K. 1974. Mastication in Galago crassicaudatus: A cinefluorographic and occlusal study, p. 501530. In Martin, R. D., Doyle, G. A., and Walker, A. C. (eds.), Prosimian Biology. University of Pittsburgh Press, 983 p.Google Scholar
Kay, R. F., and Hylander, W. L. 1978. The dental structure of mammalian folivores with special reference to Primates and Phalangeroidea, p. 173191. In Montgomery, G. G. (ed.), The Ecology of Arboreal Folivores. Smithsonian Institution Press, Washington, 574 p.Google Scholar
Kirsch, J. A. W., and Waller, P. F. 1979. Notes on the trapping and behavior of the Caenolestidae (Marsupialia). Journal of Mammalogy, 60:390395.CrossRefGoogle Scholar
Kraglievich, J. L. 1953. Contribuciones al conocimiento de los Primates fósiles de la Patagonia. Anales Museo de Nahuel Huapi, 3:3762.Google Scholar
Krause, D. W. 1982. Jaw movement, dental function, and diet in the Paleocene multituberculate Ptilodus . Paleobiology, 8:265281.CrossRefGoogle Scholar
Lyne, A. G. 1964. Observations on the breeding and growth of the marsupial Perameles nasuta Geoffroy, with notes on other bandicoots. Australian Journal of Zoology, 12:322339.CrossRefGoogle Scholar
Macmillen, R. E., and Dawson, T. J. 1986. Energy and water metabolism of the kowari Dasyuroides byrnei (Marsupialia: Dasyuridae), while resting and running. Australian Mammalogy, 9:8795.Google Scholar
Marshall, L. G. 1976. Revision of the South American Fossil Marsupial subfamily Abderitinae (Mammalia, Caenolestidae). Publicaciones del Museo Municipal Ciencas Naturales “Lorenzo Scaglia”, 2:5789.Google Scholar
Marshall, L. G. 1980. Systematics of the South American marsupial family Caenolestidae. Fieldiana (Geology), 5:1145.Google Scholar
Marshall, L. G. 1990. Fossil Marsupialia from the type Friasian land mammal age (Miocene), Alto Rio Cisnes, Aisen, Chile. Revista Geológia de Chile, 17:1955.Google Scholar
Marshall, L. G., and Pascual, R. 1977. Neuvos marsupiales caenolestidae del “Piso Notohihidense” (SW de Santa cruz, Patagonia) de Ameghino. Sus Aportaciones a la chronologia y evolucion de las cominidades de mamiferos sudamericanos. Publicaciones del Museo Municipal de Ciencias Naturales de Mar del Plata “Lorenzo Scaglia”, 2(4):91122Google Scholar
Marshall, L. G., Drake, R. E., Curtis, G. H., Butler, R. F., Flanagan, K. M., and Naeser, C. W. 1986. Geochronology of Type Santacrucian (Middle Tertiary) Land Mammal Age, Patagonia, Argentina. Journal of Geology, 94:449457.CrossRefGoogle Scholar
Morton, S. R. 1978. An ecological study of Sminthopsis crassicaudata (Marsupialia: Dasyuridae) I. Distribution, study areas, and methods. Australian Wildlife Research, 5:151162.CrossRefGoogle Scholar
Nagy, K. A., Seymour, R. S., Lee, A. K., and Braithwaite, R. 1978. Energy and water budgets in free-living Antechinus stuartii (Marsupialia: Dasyuridae). Journal of Mammalogy, 59(1):6068Google Scholar
Parker, P. J. 1977. Aspects of the Biology of Bettongia penicillata. Unpublished Ph.D. dissertation. Yale University, New Haven, 222 p.Google Scholar
Paula Couto, C. de. 1952. Fossil mammals from the beginning of the Cenozoic in Brazil. Marsupialia: Polydolopidae and Borhyaenidae. American Museum Novitates, 1559:127.Google Scholar
Peters, R. H. 1983. The Ecological Implication of Body Size. Cambridge University Press, Cambridge, 392 p.CrossRefGoogle Scholar
Rae, T. C., Bown, T. M., and Fleagle, J. G. 1996. New palaeothentid marsupials (Caenolestoidea) from the early Miocene of patagonian Argentina. American Museum Novitates, 3164:110Google Scholar
Reig, O. 1955. Un nuevo género y especie de caenolestinos del Plioceno de la provincia de Buenos Aires (Republica Argentina). Revista Asociación Geológico de Argentina, 10:6071.Google Scholar
Rose, K. D., and Bown, T. M. 1986. Gradual evolution and species designation in the fossil record. Contributions to Geology, University of Wyoming, Special Paper 3:119130.Google Scholar
Schlosser, M. 1925. Class V. Mammalia, vol. III. In von Zittel, K. A. (ed.) (Revised by M. Schlosser), Textbook of Paleontology. Macmillan and Company, London, 316 p.Google Scholar
Schmidt-Nielsen, K. 1984. Scaling: Why is Animal Size so Important? Cambridge University Press, Cambridge, 241 p.CrossRefGoogle Scholar
Simpson, G. G. 1932. Some new or little known mammals from the “Colpodon” beds of Patagonia. American Museum Novitatis, 575:112.Google Scholar
Simpson, G. G. 1933. The “Plagiaulacoid” type of mammalian dentition. Journal of Mammalogy, 14:97107.CrossRefGoogle Scholar
Sinclair, W. J. 1906. Mammalia of the Santa Cruz beds: Marsupialia. Report of the Princeton University Expedition to Patagonia, 4(3):333460Google Scholar
Smith, A. P. 1982. Diet and feeding strategies of the marsupial sugar glider in temperate Australia. Journal of Animal Ecology, 51:149166.CrossRefGoogle Scholar
Smith, A. P. 1984. Demographic consequences of reproduction, dispersal and social interaction in a population of leadbeaters possum (Gymnobelideus leadbeateri), p. 359373. In Smith, A. P. and Hume, I. D. (eds.), Possums and Gliders. Surrey Beatty and Sons, Chipping Norton, Australia.Google Scholar
Smith, A. P., and Broome, L. 1992. The effects of season, sex and habitat on the diet of the mountain pygmy-possum (Burramys parvus). Wildlife Research, 19:755768.CrossRefGoogle Scholar
Smith, A. P., and Lee, A. 1984. The evolution of strategies for survival and reproduction in possums and gliders, p. 1734. In Smith, A. and Hume, I. (eds.), Possums and Gliders. Surrey Beatty and Sons, Chipping Norton, Australia.Google Scholar
Strahan, R. 1995. Mammals of Australia. Smithsonian Institution Press, Washington, 756 p.Google Scholar
Strait, S. G. 1993a. Differences in occlusal morphology and molar size in frugivores and faunivores. Journal of Human Evolution, 25:471484.CrossRefGoogle Scholar
Strait, S. G. 1993b. Molar morphology and food texture among small-bodied insectivorous mammals. Journal of Mammalogy, 74:391402.CrossRefGoogle Scholar
Strait, S. G. 1997. Tooth use and the physical properties of food. Evolutionary Anthropology, 5:199211.3.0.CO;2-8>CrossRefGoogle Scholar
Taylor, M. E., and Hannam, A. G. 1987. Tooth microwear and diet in the African Viverridae. Canadian Journal of Zoology, 65:16961702.CrossRefGoogle Scholar
Taylor, R. J. 1992. Seasonal changes in the diet of the Tasmanian bettong (Bettongia gaimardi), a myrmycophagous marsupial. Journal of Mammalogy, 73:408414.CrossRefGoogle Scholar
Turner, V. 1984. Eucalyptus pollen in the diet of the feathertail glider, Acrobates pygmaeus (Marsupialia: Burramyidae). Australian Wildlife Research, 11:7781.CrossRefGoogle Scholar
Vrba, E. S. 1980. Morphological and environmental change: How do they relate in time? South African Journal of Science, 72(2):6184Google Scholar
Ward, S. J. 1990. Life history of the Eastern pygmy-possum Cercartetus nanus (Burramyidae: Marsupialia) in South-eastern Australian. Australian Journal of Zoology, 38:287304.CrossRefGoogle Scholar