Skip to main content Accessibility help
×
Home

Validity and reliability of an online self-report 24-h dietary recall method (Intake24): a doubly labelled water study and repeated-measures analysis

  • Emma Foster (a1), Clement Lee (a2) (a3), Fumiaki Imamura (a4), Stefanie E. Hollidge (a4), Kate L. Westgate (a4), Michelle C. Venables (a5), Ivan Poliakov (a6), Maisie K. Rowland (a1), Timur Osadchiy (a6), Jennifer C. Bradley (a1), Emma L. Simpson (a6), Ashley J. Adamson (a1), Patrick Olivier (a7), Nick Wareham (a4), Nita G. Forouhi (a4) and Soren Brage (a3)...

Abstract

Online self-reported 24-h dietary recall systems promise increased feasibility of dietary assessment. Comparison against interviewer-led recalls established their convergent validity; however, reliability and criterion-validity information is lacking. The validity of energy intakes (EI) reported using Intake24, an online 24-h recall system, was assessed against concurrent measurement of total energy expenditure (TEE) using doubly labelled water in ninety-eight UK adults (40–65 years). Accuracy and precision of EI were assessed using correlation and Bland–Altman analysis. Test–retest reliability of energy and nutrient intakes was assessed using data from three further UK studies where participants (11–88 years) completed Intake24 at least four times; reliability was assessed using intra-class correlations (ICC). Compared with TEE, participants under-reported EI by 25 % (95 % limits of agreement −73 % to +68 %) in the first recall, 22 % (−61 % to +41 %) for average of first two, and 25 % (−60 % to +28 %) for first three recalls. Correlations between EI and TEE were 0·31 (first), 0·47 (first two) and 0·39 (first three recalls), respectively. ICC for a single recall was 0·35 for EI and ranged from 0·31 for Fe to 0·43 for non-milk extrinsic sugars (NMES). Considering pairs of recalls (first two v. third and fourth recalls), ICC was 0·52 for EI and ranged from 0·37 for fat to 0·63 for NMES. EI reported with Intake24 was moderately correlated with objectively measured TEE and underestimated on average to the same extent as seen with interviewer-led 24-h recalls and estimated weight food diaries. Online 24-h recall systems may offer low-cost, low-burden alternatives for collecting dietary information.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Validity and reliability of an online self-report 24-h dietary recall method (Intake24): a doubly labelled water study and repeated-measures analysis
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Validity and reliability of an online self-report 24-h dietary recall method (Intake24): a doubly labelled water study and repeated-measures analysis
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Validity and reliability of an online self-report 24-h dietary recall method (Intake24): a doubly labelled water study and repeated-measures analysis
      Available formats
      ×

Copyright

This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

Corresponding author

*Corresponding author: Emma Simpson, email Emma.Simpson@ncl.ac.uk

References

Hide All
1.Black, AE (1996) Under-reporting of energy intake at all levels of energy expenditure: evidence from doubly labelled water studies. Proc Nutr Soc 56, 121A.
2.Goris, AHC, Westerterp-Plantenga, MS & Westerterp, KR (2000) Undereating and underrecording of habitual food intake in obese men: selective underreporting of fat intake. Am J Clin Nutr 71, 130134.
3.Livingstone, MBE, Prentice, AM, Strain, JJ, et al. (1990) Accuracy of weighed dietary records in studies of diet and health. Br Med J 300, 708712.
4.Albar, SA, Alwan, NA, Evans, CE, et al. (2016) Agreement between an online dietary assessment tool (myfood24) and an interviewer-administered 24-h dietary recall in British adolescents aged 11–18 years. Br J Nutr 115, 16781686.
5.Subar, AF, Kirkpatrick, SI, Mittl, B, et al. (2012) The Automated Self-Administered 24-hour dietary recall (ASA24): a resource for researchers, clinicians, and educators from the National Cancer Institute. J Acad Nutr Diet 112, 11341137.
6.Touvier, M, Kesse-Guyot, E, Mejean, C, et al. (2011) Comparison between an interactive web-based self-administered 24 h dietary record and an interview by a dietitian for large-scale epidemiological studies. Br J Nutr 105, 10551064.
7.Liu, B, Young, H, Crowe, FL, et al. (2011) Development and evaluation of the Oxford WebQ, a low-cost, web-based method for assessment of previous 24 h dietary intakes in large-scale prospective studies. Public Health Nutr 14, 19982005.
8.Rowland, MK, Adamson, AJ, Poliakov, I, et al. (2018) Field testing of the use of Intake24 – an online 24-hour dietary recall system. Nutrients 10, E1690.
9.Raper, N, Perloff, B, Ingwersen, L, et al. (2004) An overview of USDA's dietary intake data system. J Food Compos Anal 17, 545555.
10.Roe, M, Pinchen, H, Church, S, et al. (2015) McCance and Widdowson's The Composition of Foods seventh summary edition and updated composition of foods integrated dataset. Nutr Bull 40, 3639.
11.Foster, E, Hawkins, A, Barton, KL, et al. (2017) Development of food photographs for use with children aged 18 months to 16 years: comparison against weighed food diaries – The Young Person's Food Atlas (UK). PLOS ONE 12, e0169084.
12.Foster, E, Matthews, JN, Lloyd, J, et al. (2008) Children's estimates of food portion size: the development and evaluation of three portion size assessment tools for use with children. Br J Nutr 99, 175184.
13.Simpson, E, Bradley, J, Poliakov, I, et al. (2017) Iterative development of an online dietary recall tool: INTAKE24. Nutrients 9, E118.
14.Bradley, J, Simpson, E, Poliakov, I, et al. (2016) Comparison of INTAKE24 (an online 24-h dietary recall tool) with interviewer-led 24-h recall in 11–24 year-old. Nutrients 8, E358.
15.Lifson, N, Gordon, GB & McClintock, R (1955) Measurement of total carbon dioxide production by means of D2O18. J Appl Physiol 7, 704710.
16.Schoeller, DA & Van Santen, E (1982) Measurement of energy expenditure in humans by doubly labeled water method. J Appl Physiol 53, 955959.
17.Livingstone, MB, Prentice, AM, Coward, WA, et al. (1992) Validation of estimates of energy intake by weighed dietary record and diet history in children and adolescents. Am J Clin Nutr 56, 2935.
18.Black, AE (2000) Critical evaluation of energy intake using the Goldberg cut-off for energy intake: basal metabolic rate. A practical guide to its calculation, use and limitations. Int J Obes 24, 11191130.
19.O'Connor, L, Brage, S, Griffin, SJ, et al. (2015) The cross-sectional association between snacking behaviour and measures of adiposity: The Fenland Study, UK. Br J Nutr 114, 12861293.
20.Bland, JM & Altman, DG (1986) Statistical methods for assessing agreement between two methods of clinical measurement. Lancet i, 307310.
21.Roether, W (1970) Water–CO2 exchange set-up for the routine 18oxygen assay of natural waters. Int J Appl Radiat Isot 21, 379387.
22.Craig, H (1957) Isotopic standards for carbon and oxygen and correction factors for mass-spectrometric analysis of carbon dioxide. Geochim Cosmochim Acta 12, 133149.
23.Rimm, EB, Giovannucci, EL, Stampfer, MJ, et al. (1992) Reproducibility and validity of an expanded self-administered semiquantitative food frequency questionnaire among male health professionals. Am J Epidemiol 135, 11141126.
24.Koo, TK & Li, MY (2016) A guideline of selecting and reporting intraclass correlation coefficients for reliability research. J Chiropr Med 15, 155163.
25.R Core Team (2018) R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing.
26.Stubbs, RJ, O'Reilly, LM, Whybrow, S, et al. (2014) Measuring the difference between actual and reported food intakes in the context of energy balance under laboratory conditions. Br J Nutr 111, 20322043.
27.Bates, B, Lennox, A, Prentice, A, et al. (2014) National Diet and Nutrition Survey Results from Years 1, 2, 3 and 4 (Combined) of the Rolling Programme (2008/2009–2011/2012). A survey carried out on behalf of Public Health England and the Food Standards Agency. https://www.food.gov.uk/sites/default/files/media/document/ndns-appendix-x.pdf (accessed July 2019).
28.Lopes, TS, Luiz, RR, Hoffman, DJ, et al. (2016) Misreport of energy intake assessed with food records and 24-h recalls compared with total energy expenditure estimated with DLW. Eur J Clin Nutr 70, 12591264.
29.Freedman, LS, Commins, JM, Moler, JE, et al. (2014) Pooled results from 5 validation studies of dietary self-report instruments using recovery biomarkers for energy and protein intake. Am J Epidemiol 180, 172188.
30.Arab, L, Tseng, C-H, Ang, A, et al. (2011) Validity of a multipass, web-based, 24-hour self-administered recall for assessment of total energy intake in blacks and whites. Am J Epidemiol 174, 12561265.
31.Nybacka, S, Forslund, HB, Wirfält, E, et al. (2016) Comparison of a web-based food record tool and a food-frequency questionnaire and objective validation using the doubly labelled water technique in a Swedish middle-aged population. J Nutr Sci 5, e39.
32.Park, Y, Dodd, KW, Kipnis, V, et al. (2018) Comparison of self-reported dietary intakes from the Automated Self-Administered 24-h recall, 4-d food records, and food-frequency questionnaires against recovery biomarkers. Am J Clin Nutr 107, 8093.
33.Yuan, C, Spiegelman, D, Rimm, EB, et al. (2017) Relative validity of nutrient intakes assessed by questionnaire, 24-hour recalls, and diet records as compared with urinary recovery and plasma concentration biomarkers: findings for women. Am J Epidemiol 187, 10511063.
34.Basiotis, PP, Welsh, SO, Cronin, FJ, et al. (1987) Number of days of food intake records required to estimate individual and group nutrient intakes with defined confidence. J Nutr 117, 16381641.
35.Coward, WA & Cole, TJ (1990) The doubly labeled water method for the measurement of energy expenditure in humans: risks and benefits. In Bristol-Myers Nutrition Symposia 1990, vol. 9, pp. 139176. New York: Academic Press, Inc.
36.Ritz, P, Cole, TJ, Couet, C, et al. (1996) Precision of DLW energy expenditure measurements: contribution of natural abundance variations. Am J Physiol Endocrinol Metab 270, E164E1E9.
37.Schoeller, DA (1988) Measurement of energy expenditure in free-living humans by using doubly labeled water. J Nutr 118, 12781289.
38.Martin, CK, Han, H, Coulon, SM, et al. (2009) A novel method to remotely measure food intake of free-living individuals in real time: the remote food photography method. Br J Nutr 101, 446456.
39.Schap, TE, Zhu, F, Delp, EJ, et al. (2014) Merging dietary assessment with the adolescent lifestyle. J Hum Nutr Diet 27, 8288.
40.Sun, M, Burke, LE, Baranowski, T, et al. (2015) An exploratory study on a chest-worn computer for evaluation of diet, physical activity and lifestyle. J Healthc Eng 6, 122.
41.Sanghvi, A, Redman, LM, Martin, CK, et al. (2015) Validation of an inexpensive and accurate mathematical method to measure long-term changes in free-living energy intake, 2. Am J Clin Nutr 102, 353358.
42.Tooze, JA, Midthune, D, Dodd, KW, et al. (2006) A new statistical method for estimating the usual intake of episodically consumed foods with application to their distribution. J Am Diet Assoc 106, 15751587.

Keywords

Type Description Title
WORD
Supplementary materials

Foster et al. supplementary material
Foster et al. supplementary material

 Word (143 KB)
143 KB

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed