Skip to main content Accessibility help
×
Home

Postprandial changes in gene expression of cholesterol influx and efflux mediators after intake of SFA compared with n-6 PUFA in subjects with and without familial hypercholesterolaemia: secondary outcomes of a randomised controlled trial

  • Linn K. L. Øyri (a1), Ingunn Narverud (a1) (a2), Martin P. Bogsrud (a2) (a3), Patrik Hansson (a1), Lena Leder (a4), Marte G. Byfuglien (a4), Marit B. Veierød (a5), Magne Thoresen (a5), Stine M. Ulven (a1) and Kirsten B. Holven (a1) (a2)...

Abstract

The long-term cholesterol-lowering effect of replacing intake of SFA with PUFA is well established, but has not been fully explained mechanistically. We examined the postprandial response of meals with different fat quality on expression of lipid genes in peripheral blood mononuclear cells (PBMC) in subjects with and without familial hypercholesterolaemia (FH). Thirteen subjects with FH (who had discontinued lipid-lowering treatment ≥4 weeks prior to both test days) and fourteen normolipidaemic controls were included in a randomised controlled double-blind crossover study with two meals, each with 60 g of fat either mainly SFA (about 40% energy) or n-6 PUFA (about 40% energy). PBMC were isolated in fasting, and 4 and 6 h postprandial blood samples. Expression of thirty-three lipid genes was analysed by reverse transcription quantitative PCR. A linear mixed model was used to assess postprandial effects between meals and groups. There was a significant interaction between meal and group for MSR1 (P = 0·03), where intake of SFA compared with n-6 PUFA induced a larger reduction in gene expression in controls only (P = 0·01). Intake of SFA compared with n-6 PUFA induced larger reductions in gene expression levels of LDLR and FADS1/2, smaller increases of INSIG1 and FASN, and larger increases of ABCA1 and ABCG1 (P = 0·01 for all, no group interaction). Intake of SFA compared with n-6 PUFA induced changes in gene expression of cholesterol influx and efflux mediators in PBMC including lower LDLR and higher ABCA1/G1, potentially explaining the long-term cholesterol-raising effect of a high SFA intake.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Postprandial changes in gene expression of cholesterol influx and efflux mediators after intake of SFA compared with n-6 PUFA in subjects with and without familial hypercholesterolaemia: secondary outcomes of a randomised controlled trial
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Postprandial changes in gene expression of cholesterol influx and efflux mediators after intake of SFA compared with n-6 PUFA in subjects with and without familial hypercholesterolaemia: secondary outcomes of a randomised controlled trial
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Postprandial changes in gene expression of cholesterol influx and efflux mediators after intake of SFA compared with n-6 PUFA in subjects with and without familial hypercholesterolaemia: secondary outcomes of a randomised controlled trial
      Available formats
      ×

Copyright

This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

Corresponding author

*Corresponding author: Kirsten B. Holven, email k.b.holven@medisin.uio.no

Footnotes

Hide All

Contributed equally.

Footnotes

References

Hide All
1.Ference, BA, Ginsberg, HN, Graham, I, et al. (2017) Low-density lipoproteins cause atherosclerotic cardiovascular disease. 1. Evidence from genetic, epidemiologic, and clinical studies. A consensus statement from the European Atherosclerosis Society Consensus Panel. Eur Heart J 38, 24592472.
2.Mensink, RP, Zock, PL, Kester, AD, et al. (2003) Effects of dietary fatty acids and carbohydrates on the ratio of serum total to HDL cholesterol and on serum lipids and apolipoproteins: a meta-analysis of 60 controlled trials. Am J Clin Nutr 77, 11461155.
3.Ulven, SM, Leder, L, Elind, E, et al. (2016) Exchanging a few commercial, regularly consumed food items with improved fat quality reduces total cholesterol and LDL-cholesterol: a double-blind, randomised controlled trial. Br J Nutr 116, 13831393.
4.Mozaffarian, D, Micha, R & Wallace, S (2010) Effects on coronary heart disease of increasing polyunsaturated fat in place of saturated fat: a systematic review and meta-analysis of randomized controlled trials. PLoS Med 7, e1000252.
5.Piepoli, MF, Hoes, AW, Agewall, S, et al. (2016) 2016 European guidelines on cardiovascular disease prevention in clinical practice: The Sixth Joint Task Force of the European Society of Cardiology and Other Societies on cardiovascular disease prevention in clinical practice (constituted by representatives of 10 societies and by invited experts) developed with the special contribution of the European Association for Cardiovascular Prevention and Rehabilitation (EACPR). Eur Heart J 37, 23152381.
6.Schwab, U, Lauritzen, L, Tholstrup, T, et al. (2014) Effect of the amount and type of dietary fat on cardiometabolic risk factors and risk of developing type 2 diabetes, cardiovascular diseases, and cancer: a systematic review. Food Nutr Res 58, 25145.
7.Brautbar, A, Leary, E, Rasmussen, K, et al. (2015) Genetics of familial hypercholesterolemia. Curr Atheroscler Rep 17, 491.
8.Mundal, L, Sarancic, M, Ose, L, et al. (2014) Mortality among patients with familial hypercholesterolemia: a registry-based study in Norway, 1992–2010. J Am Heart Assoc 3, e001236.
9.Kolovou, GD, Kostakou, PM & Anagnostopoulou, KK (2011) Familial hypercholesterolemia and triglyceride metabolism. Int J Cardiol 147, 349358.
10.Chan, DC & Watts, GF (2012) Postprandial lipoprotein metabolism in familial hypercholesterolemia: thinking outside the box. Metabolism 61, 311.
11.Oyri, LKL, Hansson, P, Bogsrud, MP, et al. (2018) Delayed postprandial TAG peak after intake of SFA compared with PUFA in subjects with and without familial hypercholesterolaemia: a randomised controlled trial. Br J Nutr 119, 11421150.
12.Caimari, A, Oliver, P, Keijer, J, et al. (2010) Peripheral blood mononuclear cells as a model to study the response of energy homeostasis-related genes to acute changes in feeding conditions. OMICS 14, 129141.
13.Powell, EE & Kroon, PA (1994) Low density lipoprotein receptor and 3-hydroxy-3-methylglutaryl coenzyme A reductase gene expression in human mononuclear leukocytes is regulated coordinately and parallels gene expression in human liver. J Clin Invest 93, 21682174.
14.Aggarwal, D, Freake, HC, Soliman, GA, et al. (2006) Validation of using gene expression in mononuclear cells as a marker for hepatic cholesterol metabolism. Lipids Health Dis 5, 22.
15.Liew, CC, Ma, J, Tang, HC, et al. (2006) The peripheral blood transcriptome dynamically reflects system wide biology: a potential diagnostic tool. J Lab Clin Med 147, 126132.
16.Mustad, VA, Etherton, TD, Cooper, AD, et al. (1997) Reducing saturated fat intake is associated with increased levels of LDL receptors on mononuclear cells in healthy men and women. J Lipid Res 38, 459468.
17.Fernandez, ML, Lin, EC & McNamara, DJ (1992) Regulation of guinea pig plasma low density lipoprotein kinetics by dietary fat saturation. J Lipid Res 33, 97109.
18.Livak, KJ & Schmittgen, TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2–ΔΔ CT method. Methods 25, 402408.
19.Esser, D, van Dijk, SJ, Oosterink, E, et al. (2015) High fat challenges with different fatty acids affect distinct atherogenic gene expression pathways in immune cells from lean and obese subjects. Mol Nutr Food Res 59, 15631572.
20.Ulven, SM, Christensen, JJ, Nygard, O, et al. (2019) Using metabolic profiling and gene expression analyses to explore molecular effects of replacing saturated fat with polyunsaturated fat – a randomized controlled dietary intervention study. Am J Clin Nutr 109, 12391250.
21.Choi, SH, Gharahmany, G, Walzem, RL, et al. (2018) Ground beef high in total fat and saturated fatty acids decreases X receptor signaling targets in peripheral blood mononuclear cells of men and women. Lipids 53, 279290.
22.Retterstøl, K, Svendsen, M, Narverud, I, et al. (2018) Effect of low carbohydrate high fat diet on LDL cholesterol and gene expression in normal-weight, young adults: a randomized controlled study. Atherosclerosis 279, 5261.
23.Fernandez, ML & West, KL (2005) Mechanisms by which dietary fatty acids modulate plasma lipids. J Nutr 135, 20752078.
24.Horton, JD, Cuthbert, JA & Spady, DK (1993) Dietary fatty acids regulate hepatic low density lipoprotein (LDL) transport by altering LDL receptor protein and mRNA levels. J Clin Invest 92, 743749.
25.Mustad, VA, Ellsworth, JL, Cooper, AD, et al. (1996) Dietary linoleic acid increases and palmitic acid decreases hepatic LDL receptor protein and mRNA abundance in young pigs. J Lipid Res 37, 23102323.
26.Sacks, FM, Lichtenstein, AH, Wu, JHY, et al. (2017) Dietary fats and cardiovascular disease: a presidential advisory from the American Heart Association. Circulation 136, e1e23.
27.Raghow, R, Yellaturu, C, Deng, X, et al. (2008) SREBPs: the crossroads of physiological and pathological lipid homeostasis. Trends Endocrinol Metab 19, 6573.
28.Engelking, LJ, Liang, G, Hammer, RE, et al. (2005) Schoenheimer effect explained – feedback regulation of cholesterol synthesis in mice mediated by Insig proteins. J Clin Invest 115, 24892498.
29.Bouwens, M, Grootte Bromhaar, M, Jansen, J, et al. (2010) Postprandial dietary lipid-specific effects on human peripheral blood mononuclear cell gene expression profiles. Am J Clin Nutr 91, 208217.
30.Kennedy, MA, Barrera, GC, Nakamura, K, et al. (2005) ABCG1 has a critical role in mediating cholesterol efflux to HDL and preventing cellular lipid accumulation. Cell Metab 1, 121131.
31.Wang, N, Lan, D, Chen, W, et al. (2004) ATP-binding cassette transporters G1 and G4 mediate cellular cholesterol efflux to high-density lipoproteins. Proc Natl Acad Sci U S A 101, 97749779.
32.van Meer, G, Voelker, DR & Feigenson, GW (2008) Membrane lipids: where they are and how they behave. Nat Rev Mol Cell Biol 9, 112124.
33.de Carvalho, C & Caramujo, MJ (2018) The various roles of fatty acids. Molecules 23, E2583.
34.Matsuzaka, T, Shimano, H, Yahagi, N, et al. (2002) Dual regulation of mouse Δ5- and Δ6-desaturase gene expression by SREBP-1 and PPARα. J Lipid Res 43, 107114.
35.Ntambi, JM (1999) Regulation of stearoyl-CoA desaturase by polyunsaturated fatty acids and cholesterol. J Lipid Res 40, 15491558.
36.Reardon, HT, Hsieh, AT, Park, WJ, et al. (2013) Dietary long-chain polyunsaturated fatty acids upregulate expression of FADS3 transcripts. Prostaglandins Leukot Essent Fatty Acids 88, 1519.
37.Kelley, JL, Ozment, TR, Li, C, et al. (2014) Scavenger receptor-A (CD204): a two-edged sword in health and disease. Crit Rev Immunol 34, 241261.
38.Oh, J, Riek, AE, Weng, S, et al. (2012) Endoplasmic reticulum stress controls M2 macrophage differentiation and foam cell formation. J Biol Chem 287, 1162911641.
39.Dolores Mayas, M, Isabel Queipo-Ortuno, M, Clemente-Postigo, M, et al. (2011) Influence of a fat overload on lipogenic regulators in metabolic syndrome patients. Br J Nutr 105, 895901.

Keywords

Type Description Title
WORD
Supplementary materials

Øyri et al. supplementary material
Øyri et al. supplementary material 1

 Word (36 KB)
36 KB

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed