Skip to main content Accessibility help
×
Home

Estimated intake of dietary phyto-oestrogens in Australian women and evaluation of correlates of phyto-oestrogen intake

  • Petra H. Lahmann (a1), Maria Celia Hughes (a1), Torukiri I. Ibiebele (a1), Angela A. Mulligan (a2), Gunter G. C. Kuhnle (a2) (a3) and Penelope M. Webb (a1)...

Abstract

The role of dietary phyto-oestrogens in health has been of continued interest and debate, but data available on the distribution of intake in the Australian diet are scarce. Therefore, we aimed to estimate phyto-oestrogen consumption in Australian women, describe the pattern of intake and identify correlates of high phyto-oestrogen intake. Study participants were 2078 control women (18–79 years) from two population-based case–control studies on gynaecological cancers (2002–2007). Dietary information was obtained using a 135-item FFQ, and the intakes of isoflavones, lignans, enterolignans and coumestans, including their individual components, were estimated using a database of phyto-oestrogen content in food developed in the UK. Median total intake (energy-adjusted) of phyto-oestrogens was 1·29 mg/d, including 611 µg/d isoflavones, 639 µg/d lignans, 21 µg/d enterolignans and 8 µg/d coumestrol. Both isoflavone and lignan intakes were strongly skewed towards higher values and positively correlated with age. Women consumed on average two servings of soyabean foods/week. Compared to lower phyto-oestrogen consumers (≤1·29 mg/d, median split), higher phyto-oestrogen consumers (>1·29 mg/d) were slightly older, less likely to be smokers, had a higher educational and physical activity level, lower BMI, lower intake of dietary fat, and higher intake of fibre, selected micronutrients and soyabean foods (all P < 0·03). The daily intake of phyto-oestrogens in Australian women with predominantly Caucasian ethnicity is approximately 1 mg; this is similar to other Western populations, but considerably lower than that among Asian women. However, those with a relatively high phyto-oestrogen diet seem to have a healthier lifestyle and a more favourable dietary profile compared to others.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Estimated intake of dietary phyto-oestrogens in Australian women and evaluation of correlates of phyto-oestrogen intake
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Estimated intake of dietary phyto-oestrogens in Australian women and evaluation of correlates of phyto-oestrogen intake
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Estimated intake of dietary phyto-oestrogens in Australian women and evaluation of correlates of phyto-oestrogen intake
      Available formats
      ×

Copyright

The online version of this article is published within an Open Access environment subject to the conditions of the Creative Commons Attribution-NonCommercial-ShareAlike licence . The written permission of Cambridge University Press must be obtained for commercial re-use.

Corresponding author

*Corresponding author: Dr Petra H Lahmann, fax +61 7 3845 3503, email PLahmann@gmx.de

References

Hide All
1.Baber, R (2010) Phytoestrogens and post reproductive health. Maturitas 66, 344349.
2.Adlercreutz, H (2007) Lignans and human health. Crit Rev Clin Lab Sci 44, 483525.
3.Adlercreutz, H & Mazur, W (1997) Phyto-oestrogens and Western diseases. Ann Med 29, 95120.
4.Bhathena, SJ & Velasquez, MT (2002) Beneficial role of dietary phytoestrogens in obesity and diabetes. Am J Clin Nutr 76, 11911201.
5.Tham, DM, Gardner, CD & Haskell, WL (1998) Clinical review 97: potential health benefits of dietary phytoestrogens: a review of the clinical, epidemiological, and mechanistic evidence. J Clin Endocrinol Metab 83, 22232235.
6.Adlercreutz, H (2002) Phyto-oestrogens and cancer. Lancet Oncol 3, 364373.
7.Buck, K, Zaineddin, AK, Vrieling, A, et al. (2010) Meta-analyses of lignans and enterolignans in relation to breast cancer risk. Am J Clin Nutr 92, 141153.
8.Hedelin, M, Lof, M, Olsson, M, et al. (2008) Dietary phytoestrogens are not associated with risk of overall breast cancer but diets rich in coumestrol are inversely associated with risk of estrogen receptor and progesterone receptor negative breast tumors in Swedish women. J Nutr 138, 938945.
9.Myung, SK, Ju, W, Choi, HJ, et al. (2009) Soy intake and risk of endocrine-related gynaecological cancer: a meta-analysis. BJOG 116, 16971705.
10.Ward, HA & Kuhnle, GG (2010) Phytoestrogen consumption and association with breast, prostate and colorectal cancer in EPIC Norfolk. Arch Biochem Biophys 501, 170175.
11.Ward, HA, Kuhnle, GG, Mulligan, AA, et al. (2010) Breast, colorectal, and prostate cancer risk in the European Prospective Investigation into Cancer and Nutrition-Norfolk in relation to phytoestrogen intake derived from an improved database. Am J Clin Nutr 91, 440448.
12.Wu, AH, Yu, MC, Tseng, CC, et al. (2008) Epidemiology of soy exposures and breast cancer risk. Br J Cancer 98, 914.
13.Boker, LK, Van der Schouw, YT, De Kleijn, MJ, et al. (2002) Intake of dietary phytoestrogens by Dutch women. J Nutr 132, 13191328.
14.Possemiers, S, Bolca, S, Eeckhaut, E, et al. (2007) Metabolism of isoflavones, lignans and prenylflavonoids by intestinal bacteria: producer phenotyping and relation with intestinal community. FEMS Microbiol Ecol 61, 372383.
15.Messina, M, McCaskill-Stevens, W & Lampe, JW (2006) Addressing the soy and breast cancer relationship: review, commentary, and workshop proceedings. J Natl Cancer Inst 98, 12751284.
16.de Kleijn, MJ, van der Schouw, YT, Wilson, PW, et al. (2001) Intake of dietary phytoestrogens is low in postmenopausal women in the United States: the Framingham study. J Nutr 131, 18261832.
17.van Erp-Baart, MA, Brants, HA, Kiely, M, et al. (2003) Isoflavone intake in four different European countries: the VENUS approach. Br J Nutr 89, Suppl. 1, S25S30.
18.Guthrie, JR, Ball, M, Murkies, A, et al. (2000) Dietary phytoestrogen intake in mid-life Australian-born women: relationship to health variables. Climacteric 3, 254261.
19.Hanna, KL, O'Neill, S & Lyons-Wall, PM (2010) Intake of isoflavone and lignan phytoestrogens and associated demographic and lifestyle factors in older Australian women. Asia Pac J Clin Nutr 19, 540549.
20.Merritt, MA, Green, AC, Nagle, CM, et al. (2008) Talcum powder, chronic pelvic inflammation and NSAIDs in relation to risk of epithelial ovarian cancer. Int J Cancer 122, 170176.
21.Rowlands, IJ, Nagle, CM, Spurdle, AB, et al. (2011) Gynecological conditions and the risk of endometrial cancer. Gynecol Oncol 123, 537541.
22.Willett, WC, Sampson, L, Stampfer, MJ, et al. (1985) Reproducibility and validity of a semiquantitative food frequency questionnaire. Am J Epidemiol 122, 5165.
23.Marks, GC, Hughes, MC & van der Pols, JC (2006) Relative validity of food intake estimates using a food frequency questionnaire is associated with sex, age, and other personal characteristics. J Nutr 136, 459465.
24.Marks, GC, Hughes, MC & van der Pols, JC (2006) The effect of personal characteristics on the validity of nutrient intake estimates using a food-frequency questionnaire. Public Health Nutr 9, 394402.
25.McNaughton, SA, Marks, GC, Gaffney, P, et al. (2005) Validation of a food-frequency questionnaire assessment of carotenoid and vitamin E intake using weighed food records and plasma biomarkers: the method of triads model. Eur J Clin Nutr 59, 211218.
26.Ibiebele, TI, Parekh, S, Mallitt, KA, et al. (2009) Reproducibility of food and nutrient intake estimates using a semi-quantitative FFQ in Australian adults. Public Health Nutr 12, 23592365.
27.Kuhnle, GG, Dell'aquila, C, Aspinall, SM, et al. (2009) Phytoestrogen content of fruits and vegetables commonly consumed in the UK based on LC–MS and 13C-labelled standards. Food Chem 116, 542554.
28.Kuhnle, GG, Dell'aquila, C, Low, YL, et al. (2007) Extraction and quantification of phytoestrogens in foods using automated solid-phase extraction and LC/MS/MS. Anal Chem 79, 92349239.
29.Kuhnle, GG, Dell'Aquila, C, Aspinall, SM, et al. (2008) Phytoestrogen content of foods of animal origin: dairy products, eggs, meat, fish, and seafood. J Agric Food Chem 56, 1009910104.
30.Kuhnle, GGC, Dell'aquila, C, Aspinall, SM, et al. (2009) Phytoestrogen content of cereal and cereal-based foods consumed in the UK. Nutr Cancer 61, 302309.
31.King, RA & Bignell, CM (2000) Concentrations of isoflavone phyto-oestrogens and their glucosides in Australian soys beans and soya foods. Aust J Nutr Diet 57, 7078.
32.Thompson, LU, Boucher, BA, Liu, Z, et al. (2006) Phytoestrogen content of foods consumed in Canada, including isoflavones, lignans, and coumestan. Nutr Cancer 54, 184201.
33.Food Standards Australia New Zealand (2006) NUTTAB 2006 Australian Food Composition Tables. Canberra: Food Standards Australia New Zealand (FNANZ).
34.Olsen, CM, Bain, CJ, Jordan, SJ, et al. (2007) Recreational physical activity and epithelial ovarian cancer: a case–control study, systematic review, and meta-analysis. Cancer Epidemiol Biomarkers Prev 16, 23212330.
35.WHO (2000) Obesity: Preventing and Managing the Global Epidemic: Report of a WHO Consultation. WHO Technical Report Series (894). Geneva: World Health Organization.
36.Hedelin, M, Lof, M, Andersson, TM, et al. (2011) Dietary phytoestrogens and the risk of ovarian cancer in the Women's Lifestyle and Health Cohort Study. Cancer Epidemiol Biomarkers Prev 20, 308317.
37.Horn-Ross, PL, John, EM, Canchola, AJ, et al. (2003) Phytoestrogen intake and endometrial cancer risk. J Natl Cancer Inst 95, 11581164.
38.Cotterchio, M, Boucher, BA, Kreiger, N, et al. (2008) Dietary phytoestrogen intake – lignans and isoflavones – and breast cancer risk (Canada). Cancer Causes Control 19, 259272.
39.Horn-Ross, PL, Hoggatt, KJ, West, DW, et al. (2002) Recent diet and breast cancer risk: the California Teachers Study (USA). Cancer Causes Control 13, 407415.
40.Touillaud, MS, Thiebaut, AC, Niravong, M, et al. (2006) No association between dietary phytoestrogens and risk of premenopausal breast cancer in a French cohort study. Cancer Epidemiol Biomarkers Prev 15, 25742576.
41.Xu, WH, Zheng, W, Xiang, YB, et al. (2004) Soya food intake and risk of endometrial cancer among Chinese women in Shanghai: population based case–control study. Br Med J 328, 1285.
42.Cassidy, A, Bingham, S & Setchell, K (1995) Biological effects of isoflavones in young women: importance of the chemical composition of soyabean products. Br J Nutr 74, 587601.
43.Thompson, LU, Robb, P, Serraino, M, et al. (1991) Mammalian lignan production from various foods. Nutr Cancer 16, 4352.
44.Bandera, EV, Williams, MG, Sima, C, et al. (2009) Phytoestrogen consumption and endometrial cancer risk: a population-based case–control study in New Jersey. Cancer Causes Control 20, 11171127.
45.Milder, IE, Arts, IC, van de Putte, B, et al. (2005) Lignan contents of Dutch plant foods: a database including lariciresinol, pinoresinol, secoisolariciresinol and matairesinol. Br J Nutr 93, 393402.
46.Keinan-Boker, L, Peeters, PH, Mulligan, AA, et al. (2002) Soy product consumption in 10 European countries: the European Prospective Investigation into Cancer and Nutrition (EPIC) study. Public Health Nutr 5, 12171226.
47.Atkinson, C, Skor, HE, Fitzgibbons, ED, et al. (2002) Overnight urinary isoflavone excretion in a population of women living in the United States, and its relationship to isoflavone intake. Cancer Epidemiol Biomarkers Prev 11, 253260.
48.Frankenfeld, CL, Patterson, RE, Horner, NK, et al. (2003) Validation of a soy food-frequency questionnaire and evaluation of correlates of plasma isoflavone concentrations in postmenopausal women. Am J Clin Nutr 77, 674680.
49.Mulligan, AA, Welch, AA, McTaggart, AA, et al. (2007) Intakes and sources of soya foods and isoflavones in a UK population cohort study (EPIC-Norfolk). Eur J Clin Nutr 61, 248254.
50.Australian Bureau of Statistics (ABS), ABoS (2006) National Health Survey, 2004–05. Canberra: ABS.
51.Pandeya, N, Williams, GM, Green, AC, et al. (2009) Do low control response rates always affect the findings? Assessments of smoking and obesity in two Australian case-control studies of cancer. Aust N Z J Public Health 33, 312319.

Keywords

Related content

Powered by UNSILO

Estimated intake of dietary phyto-oestrogens in Australian women and evaluation of correlates of phyto-oestrogen intake

  • Petra H. Lahmann (a1), Maria Celia Hughes (a1), Torukiri I. Ibiebele (a1), Angela A. Mulligan (a2), Gunter G. C. Kuhnle (a2) (a3) and Penelope M. Webb (a1)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.