Skip to main content Accessibility help
×
Home

Dietary supplementation with fish gelatine modifies nutrient intake and leads to sex-dependent responses in TAG and C-reactive protein levels of insulin-resistant subjects

  • Éliane Picard-Deland (a1) (a2), Charles Lavigne (a1) (a3), Julie Marois (a1) (a2), Julie Bisson (a1) (a2), S. John Weisnagel (a4) (a5), André Marette (a1) (a3), Bruce Holub (a6), Eugene Chu (a7), Jiri Frohlich (a7), John S. Hill (a7) and Hélène Jacques (a1) (a2)...

Abstract

Previous studies have shown that fish protein, as well as marine n-3 PUFA, may have beneficial effects on cardiovascular risk profile. The objectives of this study were to investigate the combined effects of fish gelatine (FG) and n-3 PUFA supplementation on (1) energy intake and body weight, (2) lipid profile and (3) inflammatory and CVD markers in free-living insulin-resistant males and females. Subjects were asked to consume, in a crossover study design with two experimental periods of 8 weeks each, an n-3 PUFA supplement and n-3 PUFA supplement plus FG (n-3 PUFA + FG). n-3 PUFA + FG led to an increase in protein intake and a decrease in carbohydrate intake compared with n-3 PUFA (P < 0·02) in males and females. Sex–treatment interactions were observed for TAG (P = 0·03) and highly sensitive C-reactive protein (hsCRP) (P = 0·001) levels. In females, n-3 PUFA reduced plasma TAG by 8 % and n-3 PUFA + FG by 23 %, whereas in males, n-3 PUFA reduced plasma TAG by 25 % and n-3 PUFA + FG by 11 %. n-3 PUFA increased serum hsCRP by 13 % and n-3 PUFA + FG strongly reduced hsCRP by 40 % in males, whereas in females, n-3 PUFA reduced serum hsCRP by 6 % and n-3 PUFA + FG increased hsCRP by 20 %. In conclusion, supplementation with FG may enhance the lipid-lowering effect of marine n-3 PUFA in females and beneficially counteract the effect of n-3 PUFA on serum hsCRP in males. Further studies are needed to identify the sex-dependent mechanisms responsible for the divergent effects of FG on TAG and hsCRP levels in females and males, respectively.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Dietary supplementation with fish gelatine modifies nutrient intake and leads to sex-dependent responses in TAG and C-reactive protein levels of insulin-resistant subjects
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Dietary supplementation with fish gelatine modifies nutrient intake and leads to sex-dependent responses in TAG and C-reactive protein levels of insulin-resistant subjects
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Dietary supplementation with fish gelatine modifies nutrient intake and leads to sex-dependent responses in TAG and C-reactive protein levels of insulin-resistant subjects
      Available formats
      ×

Copyright

The online version of this article is published within an Open Access environment subject to the conditions of the Creative Commons Attribution-NonCommercial-ShareAlike licence . The written permission of Cambridge University Press must be obtained for commercial re-use.

Corresponding author

*Corresponding author: Hélène Jacques, fax +418 656 3353, email helene.jacques@fsaa.ulaval.ca

References

Hide All
1.Schenk, S, Saberi, M & Olefsky, JM (2008) Insulin sensitivity: modulation by nutrients and inflammation. J Clin Invest 118, 29923002.
2.Harris, WS, Michael, M, Ann, PT, et al. (2008) Omega-3 fatty acids and coronary heart disease risk: clinical and mechanistic perspectives. Atherosclerosis 197, 1224.
3.Calder, PC (2006) n-3 Polyunsaturated fatty acids, inflammation, and inflammatory diseases. Am J Clin Nutr 83, 1505S1519S.
4.Schacky, C (2007) n-3 PUFA in CVD: influence of cytokine polymorphism. Proc Nutr Soc 66, 166170.
5.Vega-Lopez, S, Kaul, N, Devaraj, S, et al. (2004) Supplementation with omega-3 polyunsaturated fatty acids and all-rac alpha-tocopherol alone and in combination failed to exert an anti-inflammatory effect in human volunteers. Metabolism 53, 236240.
6.Mori, TA, Woodman, RJ, Burke, V, et al. (2003) Effect of eicosapentaenoic acid and docosahexaenoic acid on oxidative stress and inflammatory markers in treated-hypertensive type 2 diabetic subjects. Free Radical Biol Med 35, 772781.
7.Klein, S, Sheard, NF, Pi-Sunyer, X, et al. (2004) Weight management through lifestyle modification for the prevention and management of type 2 diabetes: rationale and strategies. A statement of the American Diabetes Association, the North American Association for the Study of Obesity, and the American Society for Clinical Nutrition. Am J Clin Nutr 80, 257263.
8.Westerterp-Plantenga, MS, Nieuwenhuizen, A, Tome, D, et al. (2009) Dietary protein, weight loss, and weight maintenance. Annu Rev Nutr 29, 2141.
9.Halton, LT & Hu, FB (2004) The effects of high protein diets on thermogenesis, satiety and weight loss: a critical review. J Am Coll Nutr 23, 373385.
10.Lavigne, C, Tremblay, F, Asselin, G, et al. (2001) Prevention of skeletal muscle insulin resistance by dietary cod protein in high fat-fed rats. Am J Physiol Endocrinol Metab 281, E62E71.
11.Ouellet, V, Marois, J, Weisnagel, SJ, et al. (2007) Dietary cod protein improves insulin sensitivity in insulin-resistant men and women. Diabetes Care 30, 28162821.
12.Gascon, A, Jacques, H, Moorjani, S, et al. (1996) Plasma lipoprotein profile and lipolytic activities in response to the substitution of lean white fish for other animal protein sources in premenopausal women. Am J Clin Nutr 63, 315321.
13.Jacques, H, Noreau, L & Moorjani, S (1992) Effects on plasma lipoproteins and endogenous sex hormones of substituting lean white fish for other animal protein sources in diets of postmenopausal women. Am J Clin Nutr 55, 896901.
14.Lacaille, B, Julien, P, Deshaies, Y, et al. (2000) Responses of plasma lipoproteins and sex hormones to the consumption of lean fish incorporated in a prudent-type diet in normolipidemic men. J Am Coll Nutr 19, 745753.
15.Beauchesne-Rondeau, E, Gascon, A, Bergeron, J, et al. (2003) Plasma lipids and lipoproteins in hypercholesterolemic men fed a lipid-lowering diet containing lean beef, lean fish, or poultry. Am J Clin Nutr 77, 587593.
16.Ouellet, V, Weisnagel, J, Marois, J, et al. (2008) Dietary cod protein reduces plasma C-reactive protein in insulin-resistant men and women. J Nutr 138, 23862391.
17.Pot, GK, Geelen, A & Majsak-Newman, G (2010) Increased consumption of fatty and lean fish reduces serum C-reactive protein concentrations but not inflammation markers in feces and in colonic biopsies. J Nutr 140, 371376.
18.Demonty, I, Deshaies, Y, Lamarche, B, et al. (2003) Cod protein lowers the hepatic triglyceride secretion rate in rats. J Nutr 133, 13981402.
19.Karim, AA & Bhat, R (2009) Fish gelatin: properties, challenges, and prospects as an alternative to mammalian gelatins. Food Hydrocolloids 23, 563576.
20.Bello, AE & Oesser, S (2006) Collagen hydrolysate for the treatment of osteoarthritis and other joint disorders: a review of the literature. Curr Med Res Opin 22, 22212232.
21.Saito, M, Kiyose, C, Higuchi, T, et al. (2009) Effect of collagen hydrolysates from salmon and trout skins on the lipid profile in rats. J Agric Food Chem 57, 1047710482.
22.Wu, J, Fujioka, M, Sugimoto, K et al. (2004) Assessment of effectiveness of oral administration of collagen peptides on bone metabolism in growing and mature rats. J Bone Miner Metab 22, 547553.
23.Shi, H & Clegg, DJ (2009) Sex differences in the regulation of body weight. Physiol Behav 97, 199204.
24.Pilote, L, Dasgupta, K, Guru, V, et al. (2007) A comprehensive view of sex-specific issues related to cardiovascular disease. Can Med Assoc J 176, S1S44.
25.Kahn, SE, McCulloch, DK & Porte, D (1997) Insulin secretion in the normal and diabetic human. In International Textbook of Diabetes Mellitus, 2nd ed., pp. 337354 [Alberti, KGMM, Zimmet, P, Defronzo, RA and H, Keen, editors]. New York: John Wiley & Sons.
26.Scarsella, C, Almeras, N, Mauriege, P, et al. (2000) Determination of reference values for fasting insulin levels in a representative sample of the adult Quebec population. Atherosclerosis 151, 101.
27.American Diabetes Association (2010) Standards of medical care in diabetes (position statement). Diabetes Care 33, S11S61.
28.Beaulieu, L, Thibodeau, J, Bryl, P, et al. (2009) Proteolytic processing of Atlantic mackerel (Scomber scombrus) and biochemical characterisation of hydrolysates. Int J Food Sci Tech 44, 16091618.
29.Moorjani, S, Gagné, C, Lupien, PJ, et al. (1986) Plasma triglycerides related decrease in high-density lipoprotein cholesterol and its association with myocardial infarction in heterozygous familial hypercholesterolemia. Metabolism 35, 311316.
30.Burstein, M & Samaille, J (1960) Sur un dosage rapide du cholestérol lié aux B-lipoproteins du sérum (On a rapid determination of cholesterol bound to serum alpha- and beta-lipoproteins). Clin Chim Acta 5, 609610.
31.Conover, WJ (1999) Some methods based on ranks. In Practical Nonparametric Statistics, 3rd ed., pp. 419420 [Wiley, B II, O'Sullivan, M and Perea, J, editors]. New York: John Wiley & Sons.
32.Alberti, KG, Zimmet, P & Shaw, J (2006) Metabolic syndrome – a new world-wide definition. A consensus statement from the International Diabetes Federation. Diabet Med 23, 469480.
33.Grundy, SM, Bryan, HB, Cleeman, JI, et al. (2004) Definition of metabolic syndrome report of the National Heart, Lung, and Blood Institute/American Heart Association conference on scientific issues related to definition. Circulation 109, 433438.
34.Pearson, TA, Mensah, GA, Alexander, RW, et al. (2003) Markers of inflammation and cardiovascular disease: application to clinical and public health practice: a statement for healthcare professionals from the Centers for Disease Control and Prevention and the American Heart Association. Circulation 107, 499511.
35.Miller, M, Stone, NJ, Ballantyne, C, et al. (2011) Triglycerides and cardiovascular disease: a scientific statement from the American Heart Association. Circulation 123, 22922333.
36.National Cholesterol Education Program (2002) Third report of the National Cholesterol Education Program (NCEP) expert panel on detection, evaluation, and treatment of high blood cholesterol in adults (Adult Treatment Panel III) Final Report. Circulation 106, 31433421.
37.Stark, KD & Holub, BJ (2004) Differential eicosapentaenoic acid elevations and altered cardiovascular disease risk factor responses after supplementation with docosahexaenoic acid in postmenopausal women receiving and not receiving hormone replacement therapy. Am J Clin Nutr 79, 765773.
38.Caslake, MJ, Miles, EA, Kofler, BM, et al. (2008) Effect of sex and genotype on cardiovascular biomarker response to fish oils: the FINGEN Study. Am J Clin Nutr 88, 618629.
39.Burton-Freeman, B (2000) Dietary fiber and energy regulation. J Nutr 130, 272S275S.
40.DiMeglio, DP & Mattes, RD (2000) Liquid versus solid carbohydrate: effects on food intake and body weight. Int J Obes 24, 794800.
41.Wolfe, BM & Piche, LA (1999) Replacement of carbohydrate by protein in a conventional-fat diet reduces cholesterol and triglyceride concentrations in healthy normolipidemic subjects. Clin Invest Med 22, 140148.
42.Wolfe, BM & Giovannetti, PM (1991) Short-term effects of substituting protein for carbohydrate in the diets of moderately hypercholesterolemic human subjects. Metabolism 40, 338343.
43.Hokanson, JE & Austin, MA (1996) Plasma triglyceride level is a risk factor for cardiovascular disease independent of high-density lipoprotein cholesterol level: a meta-analysis of population-based prospective studies. J Cardiovasc Risk 3, 213219.
44.Pugeat, M, Moulin, P, Cousin, P, et al. (1995) Interrelations between sex hormone-binding globulin (SHBG), plasma lipoproteins and cardiovascular risk. J Steroid Biochem Mol Biol 53, 567572.
45.Haffner, SM, Valdez, RA, Morales, PA, et al. (1993) Decreased sex hormone-binding globulin predicts noninsulin-dependent diabetes mellitus in women but not in men. J Clin Endocrinol Metab 77, 5660.
46.Hafidi, M, Perez, I, Zamora, J, et al. (2004) Glycine intake decreases plasma free fatty acids, adipose cell size, and blood pressure in sucrose-fed rats. Am J Physiol Regul Integr Comp Physiol 287, R1387R1393.
47.Ratnayake, N, Sarwar, G & Laffey, P (1997) Influence of dietary protein and fat on serum lipids and metabolism of essential fatty acids in rats. Br J Nutr 78, 459467.
48.Pfeuffer, M & Barth, CA (1992) Dietary sucrose but not starch promotes protein-induced differences in rates of VLDL secretion and plasma lipid concentrations in rats. J Nutr 122, 15821586.
49.Bergeron, N, Deshaies, Y & Jacques, H (1992) Dietary fish protein modulates high density lipoprotein cholesterol and lipoprotein lipase activity in rabbits. J Nutr 122, 17311737.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed