Skip to main content Accessibility help
×
Home

Addition of milk fat globule membrane-enriched supplement to a high-fat meal attenuates insulin secretion and induction of soluble epoxide hydrolase gene expression in the postprandial state in overweight and obese subjects

  • Elizabeth Beals (a1), S. G. Kamita (a2), R. Sacchi (a1), E. Demmer (a1), N. Rivera (a1), T. S. Rogers-Soeder (a1), E. R. Gertz (a3), M. D. Van Loan (a1) (a3), J. B. German (a4) (a5), B. D. Hammock (a2), J. T. Smilowitz (a4) (a5) and A. M. Zivkovic (a1) (a4)...

Abstract

CVD and associated metabolic diseases are linked to chronic inflammation, which can be modified by diet. The objective of the present study was to determine whether there is a difference in inflammatory markers, blood metabolic and lipid panels and lymphocyte gene expression in response to a high-fat dairy food challenge with or without milk fat globule membrane (MFGM). Participants consumed a dairy product-based meal containing whipping cream (WC) high in saturated fat with or without the addition of MFGM, following a 12 h fasting blood draw. Inflammatory markers including IL-6 and C-reactive protein, lipid and metabolic panels and lymphocyte gene expression fold changes were measured using multiplex assays, clinical laboratory services and TaqMan real-time RT-PCR, respectively. Fold changes in gene expression were determined using the Pfaffl method. Response variables were converted into incremental AUC, tested for differences, and corrected for multiple comparisons. The postprandial insulin response was significantly lower following the meal containing MFGM (P < 0·01). The gene encoding soluble epoxide hydrolase (EPHX2) was shown to be more up-regulated in the absence of MFGM (P = 0·009). Secondary analyses showed that participants with higher baseline cholesterol:HDL-cholesterol ratio (Chol:HDL) had a greater reduction in gene expression of cluster of differentiation 14 (CD14) and lymphotoxin β receptor (LTBR) with the WC+MFGM meal. The protein and lipid composition of MFGM is thought to be anti-inflammatory. These exploratory analyses suggest that addition of MFGM to a high-saturated fat meal modifies postprandial insulin response and offers a protective role for those individuals with higher baseline Chol:HDL.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Addition of milk fat globule membrane-enriched supplement to a high-fat meal attenuates insulin secretion and induction of soluble epoxide hydrolase gene expression in the postprandial state in overweight and obese subjects
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Addition of milk fat globule membrane-enriched supplement to a high-fat meal attenuates insulin secretion and induction of soluble epoxide hydrolase gene expression in the postprandial state in overweight and obese subjects
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Addition of milk fat globule membrane-enriched supplement to a high-fat meal attenuates insulin secretion and induction of soluble epoxide hydrolase gene expression in the postprandial state in overweight and obese subjects
      Available formats
      ×

Copyright

This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

Corresponding author

*Corresponding author: Dr Angela Zivkovic, fax +1 530 752 8966, email amzivkovic@ucdavis.edu

References

Hide All
1.Astrup, A, Dyerberg, J, Elwood, P, et al. (2011) The role of reducing intakes of saturated fat in the prevention of cardiovascular disease: where does the evidence stand in 2010? Am J Clin Nutr 93, 684688.
2.Howard, BV, Van Horn, L, Hsia, J, et al. (2006) Low-fat dietary pattern and risk of cardiovascular disease: the Women's Health Initiative Randomized Controlled Dietary Modification Trial. JAMA 295, 655666.
3.Margioris, AN (2009) Fatty acids and postprandial inflammation. Curr Opin Clin Nutr Metab Care 12, 129137.
4.Harford, KA, Reynolds, CM, McGillicuddy, FC, et al. (2011) Fats, inflammation and insulin resistance: insights to the role of macrophage and T-cell accumulation in adipose tissue. Proc Nutr Soc 70, 408417.
5.Teng, K-T, Chang, C-Y, Chang, L, et al. (2014) Modulation of obesity-induced inflammation by dietary fats: mechanisms and clinical evidence. Nutr J 13, 12.
6.Weisberg, SP, McCann, D, Desai, M, et al. (2003) Obesity is associated with macrophage accumulation in adipose tissue. J Clin Invest 112, 17961808.
7.Monteiro, R & Azevedo, I (2010) Chronic inflammation in obesity and the metabolic syndrome. Mediators Inflamm 2010, 289645.
8.Aguilar, M, Bhuket, T, Torres, S, et al. (2015) Prevalence of the metabolic syndrome in the United States, 2003–2012. JAMA 313, 19731974.
9.Yusof, NM, Rahman, JA, Zulkifly, AH, et al. (2015) Predictors of major lower limb amputation among type II diabetic patients admitted for diabetic foot problems. Singapore Med J 56, 626631.
10.Hippisley-Cox, J & Coupland, C (2016) Diabetes treatments and risk of amputation, blindness, severe kidney failure, hyperglycaemia, and hypoglycaemia: open cohort study in primary care. Br Med J 352, i1450.
11.Srikanthan, K, Feyh, A, Visweshwar, H, et al. (2016) Systematic review of metabolic syndrome biomarkers: a panel for early detection, management, and risk stratification in the West Virginian population. Int J Med Sci 13, 2538.
12.Shin, J-A, Lee, J-H, Lim, S-Y, et al. (2013) Metabolic syndrome as a predictor of type 2 diabetes, and its clinical interpretations and usefulness. J Diabetes Investig 4, 334343.
13.Demmer, E, Van Loan, MD, Rivera, N, et al. (2016) Addition of a dairy fraction rich in milk fat globule membrane to a high-saturated fat meal reduces the postprandial insulinaemic and inflammatory response in overweight and obese adults. J Nutr Sci 5, e14.
14.Irawati, D, Mamo, JCL, Slivkoff-Clark, KM, et al. (2017) Dietary fat and physiological determinants of plasma chylomicron remnant homoeostasis in normolipidaemic subjects: insight into atherogenic risk. Br J Nutr 117, 403412.
15.Nakamura, K, Miyoshi, T, Yunoki, K, et al. (2016) Postprandial hyperlipidemia as a potential residual risk factor. J Cardiol 67, 335339.
16.Higgins, V & Adeli, K (2017) Postprandial dyslipidemia: pathophysiology and cardiovascular disease risk assessment. EJIFCC 28, 168184.
17.Astrup, A (2014) Yogurt and dairy product consumption to prevent cardiometabolic diseases: epidemiologic and experimental studies. Am J Clin Nutr 99, 1235S1242S.
18.Drouin-Chartier, J-P, Brassard, D, Tessier-Grenier, M, et al. (2016) Systematic review of the association between dairy product consumption and risk of cardiovascular-related clinical outcomes. Adv Nutr 7, 10261040.
19.Thorning, TK, Raben, A, Tholstrup, T, et al. (2016) Milk and dairy products: good or bad for human health? An assessment of the totality of scientific evidence. Food Nutr Res 60, 32527.
20.Rosqvist, F, Smedman, A, Lindmark-Månsson, H, et al. (2015) Potential role of milk fat globule membrane in modulating plasma lipoproteins, gene expression, and cholesterol metabolism in humans: a randomized study. Am J Clin Nutr 102, 2030.
21.Schmid, A, Petry, N, Walther, B, et al. (2015) Inflammatory and metabolic responses to high-fat meals with and without dairy products in men. Br J Nutr 113, 18531861.
22.Argov, N, Lemay, DG & German, JB (2008) Milk fat globule structure and function: nanoscience comes to milk production. Trends Food Sci Technol 19, 617623.
23.Martini, M, Salari, F & Altomonte, I (2016) The macrostructure of milk lipids: the fat globules. Crit Rev Food Sci Nutr 56, 12091221.
24.Idei, M, Hirayama, S, Miyake, N, et al. (2014) Mean postprandial triglyceride concentration is an independent risk factor for carotid atherosclerosis in patients with type 2 diabetes. Clin Chim Acta 430, 134139.
25.Luque-Ramírez, M, Martínez-García, , Montes-Nieto, R, et al. (2013) Sexual dimorphism in adipose tissue function as evidenced by circulating adipokine concentrations in the fasting state and after an oral glucose challenge. Hum Reprod 28, 19081918.
26.Westerink, J, Hajer, GR, Kranendonk, MEG, et al. (2014) An oral mixed fat load is followed by a modest anti-inflammatory adipocytokine response in overweight patients with metabolic syndrome. Lipids 49, 247254.
27.Yacoub, M, Hassan, M, Latif, N, et al. (2012) Adipose tissue: friend or foe? Nat Rev Cardiol 9, 689702.
28.Stalenhoef, AF & de Graaf, J (2008) Association of fasting and nonfasting serum triglycerides with cardiovascular disease and the role of remnant-like lipoproteins and small dense LDL. Curr Opin Lipidol 19, 355361.
29.Zilversmit, DB (1995) Atherogenic nature of triglycerides, postprandial lipidemia, and triglyceride-rich remnant lipoproteins. Clin Chem 41, 153158.
30.Grundy, SM, Cleeman, JI, Daniels, SR, et al. (2005) Diagnosis and management of the metabolic syndrome: an American Heart Association/National Heart, Lung, and Blood Institute Scientific Statement. Circulation 112, 27352752.
31.Pedersen, A, Sandström, B & Van Amelsvoort, JM (1997) The effect of ingestion of inulin on blood lipids and gastrointestinal symptoms in healthy females. Br J Nutr 78, 215222.
32.Nappo, F, Esposito, K, Cioffi, M, et al. (2002) Postprandial endothelial activation in healthy subjects and in type 2 diabetic patients: role of fat and carbohydrate meals. J Am Coll Cardiol 39, 11451150.
33.Rogers, TS, Demmer, E, Rivera, N, et al. (2017) The role of a dairy fraction rich in milk fat globule membrane in the suppression of postprandial inflammatory markers and bone turnover in obese and overweight adults: an exploratory study. Nutr Metab 14, 36.
34.Trumbo, P, Schlicker, S, Yates, AA, et al. (2002) Dietary reference intakes for energy, carbohydrate, fiber, fat, fatty acids, cholesterol, protein and amino acids. J Am Diet Assoc 102, 16211630.
35.Baecke, JA, Burema, J & Frijters, JE (1982) A short questionnaire for the measurement of habitual physical activity in epidemiological studies. Am J Clin Nutr 36, 936942.
36.Berthelot, CC, Kamita, SG, Sacchi, R, et al. (2015) Changes in PTGS1 and ALOX12 gene expression in peripheral blood mononuclear cells are associated with changes in arachidonic acid, oxylipins, and oxylipin/fatty acid ratios in response to omega-3 fatty acid supplementation. PLOS ONE 10, e0144996.
37.Pfaffl, MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29, e45.
38.Masson, CJ & Mensink, RP (2011) Exchanging saturated fatty acids for (n-6) polyunsaturated fatty acids in a mixed meal may decrease postprandial lipemia and markers of inflammation and endothelial activity in overweight men. J Nutr 141, 816821.
39.Bourlieu, C, Cheillan, D, Blot, M, et al. (2018) Polar lipid composition of bioactive dairy co-products buttermilk and butterserum: emphasis on sphingolipid and ceramide isoforms. Food Chem 240, 6774.
40.Sadur, CN & Eckel, RH (1982) Insulin stimulation of adipose tissue lipoprotein lipase. Use of the euglycemic clamp technique. J Clin Invest 69, 11191125.
41.Esposito, K, Nappo, F, Marfella, R, et al. (2002) Inflammatory cytokine concentrations are acutely increased by hyperglycemia in humans: role of oxidative stress. Circulation 106, 20672072.
42.Vors, C, Pineau, G, Drai, J, et al. (2015) Postprandial endotoxemia linked with chylomicrons and lipopolysaccharides handling in obese versus lean men: a lipid dose–effect trial. J Clin Endocrinol Metab 100, 34273435.
43.Laugerette, F, Vors, C, Géloën, A, et al. (2011) Emulsified lipids increase endotoxemia: possible role in early postprandial low-grade inflammation. J Nutr Biochem 22, 5359.
44.He, J, Wang, C, Zhu, Y, et al. (2016) Soluble epoxide hydrolase: a potential target for metabolic diseases. J Diabetes 8, 305313.
45.Morisseau, C & Hammock, BD (2013) Impact of soluble epoxide hydrolase and epoxyeicosanoids on human health. Annu Rev Pharmacol Toxicol 53, 3758.
46.Norwood, S, Liao, J, Hammock, BD, et al. (2010) Epoxyeicosatrienoic acids and soluble epoxide hydrolase: potential therapeutic targets for inflammation and its induced carcinogenesis. Am J Transl Res 2, 447457.
47.Luria, A, Bettaieb, A, Xi, Y, et al. (2011) Soluble epoxide hydrolase deficiency alters pancreatic islet size and improves glucose homeostasis in a model of insulin resistance. Proc Natl Acad Sci U S A 108, 90389043.
48.Millán, J, Pintó, X, Muñoz, A, et al. (2009) Lipoprotein ratios: physiological significance and clinical usefulness in cardiovascular prevention. Vasc Health Risk Manag 5, 757765.
49.Hadaegh, F, Hatami, M, Tohidi, M, et al. (2010) Lipid ratios and appropriate cut off values for prediction of diabetes: a cohort of Iranian men and women. Lipids Health Dis 9, 85.
50.Laugerette, F, Alligier, M, Bastard, J-P, et al. (2014) Overfeeding increases postprandial endotoxemia in men: inflammatory outcome may depend on LPS transporters LBP and sCD14. Mol Nutr Food Res 58, 15131518.
51.Grandoch, M, Feldmann, K, Göthert, JR, et al. (2015) Deficiency in lymphotoxin β receptor protects from atherosclerosis in apoE-deficient mice. Circ Res 116, e57e68.
52.Lo, JC, Wang, Y, Tumanov, AV, et al. (2007) Lymphotoxin β receptor-dependent control of lipid homeostasis. Science 316, 285288.

Keywords

Addition of milk fat globule membrane-enriched supplement to a high-fat meal attenuates insulin secretion and induction of soluble epoxide hydrolase gene expression in the postprandial state in overweight and obese subjects

  • Elizabeth Beals (a1), S. G. Kamita (a2), R. Sacchi (a1), E. Demmer (a1), N. Rivera (a1), T. S. Rogers-Soeder (a1), E. R. Gertz (a3), M. D. Van Loan (a1) (a3), J. B. German (a4) (a5), B. D. Hammock (a2), J. T. Smilowitz (a4) (a5) and A. M. Zivkovic (a1) (a4)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed