Skip to main content Accessibility help
×
Home

Two-stage Localisation Scheme Using a Small-scale Linear Microphone Array for Indoor Environments

  • Wuyang Jiang (a1), Ling Pei (a1), Changqing Xu (a1), Liang Chen (a2) and Wenxian Yu (a3)...

Abstract

The small-scale linear microphone arrays that are widely found in smartphones could be used to locate a sound source for indoor environments. After the Time Differences Of Arrival (TDOAs) in microphone pairs are estimated, a TDOA-based hybrid localisation scheme is proposed for a small-scale linear microphone array. The scheme contains two stages: the initialisation stage using the Levenberg-Marquardt (LM) algorithm, and the refining solution stage using the Weighted Least-Square (WLS) algorithm or the Multi-Dimensional Scaling-based (MDS) algorithm. Simulations and field tests show that the proposed indoor localisation scheme outperforms the existing schemes, and it can achieve an average error of 0·32 metres in an 8 m by 5 m area.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Two-stage Localisation Scheme Using a Small-scale Linear Microphone Array for Indoor Environments
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Two-stage Localisation Scheme Using a Small-scale Linear Microphone Array for Indoor Environments
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Two-stage Localisation Scheme Using a Small-scale Linear Microphone Array for Indoor Environments
      Available formats
      ×

Copyright

Corresponding author

References

Hide All
Bahl, P. and Padmanabhan, V.N. (2000). Radar: An In-Building RF Based User Location and Tracking System. Proceedings of Infocom—Nineteenth Annual Joint Conference of the IEEE Computer and Communications Societies, Tel-Aviv, Israel.
Brandstein, M.S. (1995). A framework for speech source localisation using sensor arrays.
Brandstein, M. and Ward, D. (2001). Microphone Arrays. Springer.
Carter, G.C. (1987). Coherence and time delay estimation. Proceedings of the IEEE, 75(2), 236255.
Chan, Y.T. and Ho, K.C. (1994). A simple and efficient estimator for hyperbolic location. IEEE Transactions on Signal Processing, 42(8), 19051915.
Chen, W., Chen, R., Chen, Y., Kuusniemi, H., Wang, J. and Fu, Z. (2010). An Effective Pedestrian Dead Reckoning Algorithm Using a Unified Heading Error Model. Proceedings of IEEE/ION PLANS 2010 Conference, Indian Wells: Palm Springs, CA.
Chen, R., Chen, W., Chen, X., Zhang, X. and Chen, Y. (2011a). Sensing Strides Using EMG Signal for Pedestrian Navigation. GPS Solutions, 15(2), 161170.
Chen, R., Pei, L. and Chen, Y. (2011b). A Smart Phone Based PDR Solution for Indoor Navigation. ION GNSS 2011, Portland, OR.
Chen, L., Yang, L. and Chen, R. (2012). Time delay tracking for positioning in DTV networks. Proceedings of Ubiquitous Positioning, Indoor Navigation, and Location Based Service, Helsinki, Finland.
Chen, L., Pei, L., Kuusniemi, H., Chen, Y., Kröger, T. and Chen, R. (2013). Bayesian fusion for indoor positioning using bluetooth fingerprints. Wireless personal communications, 70(4), 17351745.
DiBiase, J.H., Silverman, H.F. and Brandstein, M.S. (2001). Robust localisation in reverberant rooms. Microphone Arrays, Berlin, Germany: Springer Berlin Heidelberg, 157180.
Filonenko, V., Cullen, C. and Carswell, J. (2010). Investigating ultrasonic positioning on mobile phones. International Conference on Indoor Positioning and Indoor Navigation, Zurich, Switzerland.
Filonenko, V., Cullen, C. and Carswell, J.D. (2012). Asynchronous ultrasonic trilateration for indoor positioning of mobile phones. Web and Wireless Geographical Information Systems. Berlin, Germany.
Foxlin, E. (2005). Pedestrian Tracking with Shoe-Mounted Inertial Sensors. IEEE Computer Graphics and Applications, 25(6), 3846.
Gomes, G. and Sarmento, H. (2009). Indoor Location System Using ZigBee Technology. Proceedings of Third International Conference on Sensor Technologies and Applications, Athens/Glyfada, Greece.
Hoflinger, F., Zhang, R., Hoppe, J., Bannoura, A., Reindl, L.M., Wendeberg, J. and Schindelhauer, C. (2012). Acoustic Self-calibrating System for Indoor Smartphone Tracking. International Conference on Indoor Positioning and Indoor Navigation, Sydney, NSW.
Holm, S. (2012). Ultrasound positioning based on time-of-flight and signal strength. International Conference on Indoor Positioning and Indoor Navigation, Sydney, NSW.
Ianniello, J. (1982). Time delay estimation via cross-correlation in the presence of large estimation errors. IEEE Transactions on Acoustics, Speech and Signal Processing, 30(6), 9981003.
IndoorAtlas Ltd. (2011). Game-changing indoor location service. http://www.indooratlas.com. Accessed October 2014.
Janson, T., Schindelhauer, C. and Wendeberg, J. (2010). Self-localisation application for iPhone using only ambient sound signals. International Conference on Indoor Positioning and Indoor Navigation. Zurich, Sweitzerland.
Khalil, F., Jullien, J.P. and Gilloire, A. (1994). Microphone array for sound pickup in teleconference systems. Journal of the Audio Engineering Society, 42(9), 691700.
Knapp, C. H. and Carter, G. C. (1976). The generalized correlation method for estimation of time delay. IEEE Transactions on Acoustics, Speech and Signal Processing, 24(4), 320332.
Kuusniemi, H., Liu, J., Pei, L., Chen, Y., Chen, L. and Chen, R. (2012). Reliability considerations of multi-sensor multi-network pedestrian navigation. IET Radar, Sonar & Navigation, 6(3), 157164.
Liu, J., Chen, R., Pei, L., Chen, W., Tenhunen, T., Kuusniemi, H., Kröger, T. and Chen, Y. (2010). Accelerometer Assisted Wireless Signals Robust Positioning Based on Hidden Markov Model. Proceedings of the IEEE/ION Position, Location and Navigation Symposium 2010, Indian Wells, CA.
Liu, J., Chen, R., Chen, Y., Pei, L. and Chen, L.(2012a). iParking: An Intelligent Indoor Location-Based Smartphone Parking Service. Sensors, 12(11), 1461214629.
Liu, J., Chen, R., Pei, L., Guinness, R. and Kuusniemi, H. (2012b). Hybrid smartphone indoor positioning solution for mobile LBS. Sensors, 12(12), 1720817233.
Lourakis, M.I. (2005). A brief description of the Levenberg-Marquardt algorithm implemented by levmar. Institute of Computer Science, Foundation for Research and Technology, 4, 16.
Mathews, M.B., Macdoran, P.F., Gold, K.L. (2011). SCP Enabled Navigation Using Signals of Opportunity in GPS Obstructed Environments. Navigation, 58(2), 91110.
Michel, U. and Barsikow, B. (2003). Localisation of sound sources on moving vehicles with microphone arrays. Proceedings 5th European Conference on Noise Control Euronoise 2003, Napels, Italy.
Moré, J.J. (1978). The Levenberg-Marquardt algorithm: implementation and theory. Numerical analysis, Berlin, Germany: Springer Berlin Heidelberg, 105116.
Ni, L.M., Liu, Y., Lau, Y.C. and Patil, A.P. (2004). Landmarc: Indoor location sensing using active RFID. Wireless networks, 10(6), 701710.
Nocedal, J. and Wright, S. (1999). Numerical Optimization. Springer-Verlag.
Pahlavan, K., Akgul, O.F., Heidari, M., Hatami, A., Elwell, M.J. and Tingley, D.R. (2006). Indoor Geolocation in the Absence of Direct Path. IEEE Wireless Communication, 13(6), 5058.
Pei, L., Chen, R., Liu, J., Chen, W., Kuusniemi, H., Tenhunen, T., Kröger, T., Chen, Y., Leppäkoski, H. and Takala, J. (2010a). Motion Recognition Assisted Indoor Wireless Navigation on a Mobile Phone. Proceedings of the 23rd International Technical Meeting of the Satellite Division of the Institute of Navigation, Portland, OR.
Pei, L., Chen, R., Liu, J., Kuusniemi, H., Tenhunen, T. and Chen, Y. (2010b). Using inquiry-based Bluetooth RSSI probability distributions for indoor positioning. Journal of Global Positioning Systems, 9(2), 122130.
Pei, L., Chen, R., Liu, J., Tenhunen, T., Kuusniemi, H. and Chen, Y. (2010c). Inquiry-Based Bluetooth Indoor Positioning via RSSI Probability Distributions. Proceedings of the Second International Conference on Advances in Satellite and Space Communications, Athens, Greece.
Pei, L., Chen, R., Liu, J., Kuusniemi, H., Chen, Y. and Tenhunen, T. (2011). Using Motion-Awareness for the 3d Indoor Personal Navigation on a Smartphone. Proceedings of the 24rd International Technical Meeting of the Satellite Division of the Institute of Navigation, Portland, OR.
Pei, L., Liu, J., Guinness, R., Chen, Y., Kuusniemi, H. and Chen, R. (2012). Using LS-SVM based motion recognition for smartphone indoor wireless positioning. Sensors, 12(5), 61556175.
Pei, L., Guinness, R., Chen, R., Liu, J., Kuusniemi, H., Chen, Y., Chen, L. and Kaistinen, J. (2013). Human Behavior Cognition Using Smartphone Sensors. Sensors, 13(2), 14021424.
Pertila, P., Mieskolainen, M. and Hamalainen, M.S. (2012). Passive self-localisation of microphones using ambient sounds. Signal Processing Conference, 2012 Proceedings of the 20th European. Bucharest, Romenia.
Piet, J., Michel, U. and Böhning, P. (2002). Localisation of the acoustic sources of the A340 with a large microphone array during flight tests. 8th AIAA/CEAS Aeroacoustics Conference, Breckenridge, Colorado.
Priyantha, N.B., Chakraborty, A. and Balakrishnan, H. (2000). The Cricket Location-Support System. Proceedings of the 6th Annual International Conference on Mobile Computing and Networking, Boston, MA.
Ruotsalainen, L., Kuusniemi, H. and Chen, R. (2011). Visual-aided Two-dimensional pedestrian indoor navigation with a smartphone. Journal of Global Positioning Systems, 10(1), 1118.
Schulte-Werning, B., Jäger, K., Strube, R. and Willenbrink, L. (2003). Recent developments in noise research at Deutsche Bahn (noise asessment, noise source localisation and specially monitored track). Journal of Sound and Vibration, 267(3), 689699.
Steinberg, B. D. (1976). Principles of aperture and array system design: Including random and adaptive arrays. Wiley-Interscience.
Storms, W., Shockley, J. and Raquet, J. (2010). Magnetic field navigation in an indoor environment. Proceedings of Ubiquitous Positioning Indoor Navigation and Location Based Service, Kirkkonummi, Finland.
Syrjärinne, J. (2001). Studies on Modern Techniques for Personal Positioning. Ph.D. thesis, Tampere University of Technology, Tampere, Finland.
Thomas, M.R., Ahrens, J. and Tashev, I. (2012). Optimal 3D beam forming using measured microphone directivity patterns. Proceedings of International Workshop on Acoustic Signal Enhancement, Aachen, Germany.
Valenzise, G., Gerosa, L., Tagliasacchi, M., Antonacci, F. and Sarti, A. (2007). Scream and gunshot detection and localisation for audio-surveillance systems. IEEE Conference on Advanced Video and Signal Based Surveillance, London, England.
Webb, J. and Ashley, J. (2012). Beginning Kinect Programming with the Microsoft Kinect SDK. Apress.
Wei, H.W., Wan, Q., Chen, Z.X. and Ye, S.F. (2008). Multidimensional scaling-based passive emitter localisation from range-difference measurements. Signal Processing, IET, 2(4), 415423.
Wei, H.W., Peng, R., Wan, Q. and Chen, Z.X. (2010). Multidimensional scaling analysis for passive moving target localisation with TDOA and FDOA measurements. IEEE Transactions on Signal Processing, 58(3), 16771688.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed