Skip to main content Accessibility help
×
Home

Simplified Constellation Architecture for the Libration Point Satellite Navigation System

  • Lei Zhang (a1) and Bo Xu (a1)

Abstract

In this paper, a simplified constellation architecture consisting of only two navigation satellites located around the Earth-Moon L 1,2 libration points is obtained for the Universe Lighthouse. In order to determine the feasible constellations that can achieve continuous global coverage for lunar orbits, an exhaustive search over all possible combinations of libration point orbits is performed first. With the use of a fitting procedure, amplitude relations between the feasible L 1 and L 2 libration point orbits are derived by polynomial interpolation. After that, a cislunar navigation simulation is conducted to verify the navigation performance of the candidate two-satellite constellations. The final Monte Carlo simulation results indicate that the simplified system is available for cislunar navigation and the best accuracy of a few tens of metres can be achieved for both the trans-lunar cruise phase and lunar orbit phase.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Simplified Constellation Architecture for the Libration Point Satellite Navigation System
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Simplified Constellation Architecture for the Libration Point Satellite Navigation System
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Simplified Constellation Architecture for the Libration Point Satellite Navigation System
      Available formats
      ×

Copyright

Corresponding author

(E-mail: xubo@nju.edu.cn)

References

Hide All
Circi, C., Romagnoli, D. and Fumenti, F. (2014). Halo orbit dynamics and properties for a lunar global positioning system design. Monthly Notices of the Royal Astronomical Society, 442(4), 35113527.
Farquhar, R.W. (1967). Lunar communications with libration-point satellites. Journal of Spacecraft and Rockets, 4(10), 13831384.
Gao, Y.T., Xu, B. and Zhang, L. (2014). Feasibility study of autonomous orbit determination using only the crosslink range measurement for a combined navigation constellation. Chinese Journal of Aeronautics, 27(5), 11991210.
Gómez, G., Llibre, J., Martínez, R. and Simó, C. (2001). Dynamics and Mission Design Near Libration Point Orbits, Vol. I, Fundamentals: The Case of Collinear Libration Points, World Scientific, Singapore.
Grebow, D. (2006). Generating periodic orbits in the circular restricted three-body problem with applications to lunar South Pole coverage. M.S. thesis, Purdue University, West Lafayette, Ind, USA.
Hill, K., Lo, M.W. and Born, G.H. (2005a). Linked, Autonomous Interplanetary Satellite Orbit Navigation (LiAISON). Paper AAS 05-399, AAS/AIAA Astrodynamics Specialist Conference, Lake Tahoe, CA.
Hill, K., Born, G.H., and Lo, M.W. (2005b). Linked, Autonomous, Interplanetary Satellite Orbit Navigation (LiAISON) in Lunar Halo Orbits. Paper AAS 05-400, AAS/AIAA Astrodynamics Specialist Conference, Lake Tahoe, CA.
Hill, K. (2007). Autonomous Navigation in Libration Point Orbits. Ph.D. thesis, Graduate School of the University of Colorado.
Lei, H.L., Xu, B., Hou, X.Y. and Sun, Y.S. (2013). High-order solutions of invariant manifolds associated with libration point orbits in the elliptic restricted three-body system. Celestial Mechanics and Dynamical Astronomy, 117(4), 349384.
Romagnoli, D. and Circi, C. (2010). Lissajous trajectories for lunar global positioning and communication systems. Celestial Mechanics and Dynamical Astronomy, 107(4), 409425.
Szebehely, V. (1967). Theory of Orbits – The Restricted Problem of Three Bodies. Academic Press, New York, London.
Zhang, L. and Xu, B. (2014). A Universe Light House — Candidate Architectures of the Libration Point Satellite Navigation System. Journal of Navigation, 67(5), 737752.
Zhang, L. and Xu, B. (2015). Navigation Performance of the Libration Point Satellite Navigation System in Cislunar Space. Journal of Navigation, 68(2), 367382.

Keywords

Related content

Powered by UNSILO

Simplified Constellation Architecture for the Libration Point Satellite Navigation System

  • Lei Zhang (a1) and Bo Xu (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.