Skip to main content Accessibility help
×
Home

A Radio/Optical Integrated Navigation Method Based on Ephemeris Correction for an Interplanetary Probe to approach a Target Planet

  • Xin Ma (a1), Jiancheng Fang (a1), Xiaolin Ning (a1), Gang Liu (a1) and Hui Ye (a2)...

Abstract

To obtain accurate navigation results with respect to Earth simultaneously with those with respect to the target for an interplanetary probe to approach the target planet, this paper proposes a Radio/Optical integrated navigation method based on ephemeris correction, which deeply affects the fusion accuracy. In this paper, the model of the ephemeris error is established, and taking the analytical solution of the ephemeris uncertainty as measurement, the target ephemeris error and its covariance are estimated by Kalman filter and fed back to modify the force models. By correcting the target ephemeris and using information fusion, the Radio/Optical integrated navigation prevents the ephemeris uncertainty polluting the fusion accuracy, and efficiently combines the radio and optical navigation results. The results show the influence of the ephemeris error can be removed, and the Radio/Optical integrated navigation is capable of providing accurate navigation results with respect to Earth and the target. The results demonstrate the proposed method yields an accuracy superior to the conventional method, which proves its effectiveness.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      A Radio/Optical Integrated Navigation Method Based on Ephemeris Correction for an Interplanetary Probe to approach a Target Planet
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      A Radio/Optical Integrated Navigation Method Based on Ephemeris Correction for an Interplanetary Probe to approach a Target Planet
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      A Radio/Optical Integrated Navigation Method Based on Ephemeris Correction for an Interplanetary Probe to approach a Target Planet
      Available formats
      ×

Copyright

Corresponding author

References

Hide All
Acton, C. H. (1996). Ancillary Data Services of NASA's Navigation and Ancillary Information Facility. Planetary and Space Science, 44, 6570,
Antreasian, P. G., Ardalan, S. M., Beswick, R. M., Criddle, K. E., Ionasescu, R., Jacobson, R. A., Jones, J. B., MacKenzie, R. A., Parcher, D. W., Pelletier, F. J., Roth, D. C., Thompson, P. F. and Vaughan, A. T. (2008). Orbit Determination Processes for the Navigation of the Cassini-Huygens Mission. Proceedings of SpaceOps 2008 Conference, Heidelberg, Germany.
Bar-Shalom, Y., Rong, L. X. and Kirubarajan, T. (2001). Estimation with Applications to Tracking and Navigation. John Wiley & Sons, Inc.
Fang, J. C. and Ning, X. L. (2010). Methods of Autonomous Celestial Navigation for Deep Space Explorer. North western Polytechnical University Press. (In Chinese)
Folkner, W. M. (2010). Uncertainties in the JPL Planetary Ephemeris. Proceedings of the Journées 2010, Paris, France.
Folkner, W. M., Williams, J. G. and Boggs, D. H. (2008). The planetary and lunar ephemeris DE 421. NASA The Interplanetary Network Progress Report, 1–31.
Graven, P., Collions, J., Sheikh, S., Hanson, J., Ray, P. and Wood, K. (2008). XNAV for Deep Space Navigation. Proceedings of 31 stAnnual AAS Guidance and Control Conference, Breckenridge, Colorado.
Guo, Y. P. (1999). Self-contain Autonomous Navigation System for Deep Space Missions. Proceedings of 1999 AAS/AIAA Space Flight Mechanics Meeting, Breckenridge, CO.
Høg, E., Fabricius, C., Makarov, V. V., Urban, S. E., Corbin, T. E., Wycoff, G. L., Bastian, U., Schwekendiek, P. and Wicenec, A. (2000). The Tycho-2 Catalogue of the 2·5 Million Brightest Stars. Astronomy and Astrophysics, 355, L27-L30.
Jordan, J. F., Madrid, G. A. and Pease, G. E. (1972). Effects of Major Errors Sources on Planetary Spacecraft Navigation Accuracies. Journal of Spacecraft, 9, 196204.
Julier, S. J. and Uhlmann, J. K. (1997) A New Extension of the Kalman Filter to Nonlinear Systems. Proceedings of SPIE 3068 Signal Processing, Sensor Fusion, and Target Recognition VI, Orlando, FL.
Julier, S. J., Uhlmann, J. K. and Durrant-Whyte, H. F. (2000). A New Method for the Nonlinear Transformation of Means and Covariances in Filters and Estimators. IEEE Transactions on Automatic Control, 45, 477–82.
Karniely, H. and Siegelmann, H. T. (2000). Sensor Registration using Neural Networks. IEEE Transactions on Aerospace and Electronic System, 36: 85101.
Klumpp, A. R., Bon, B. B., D'Amario, L. A., Downing, G. P., Frauenholz, R. B. and McReynolds, S. R. (1980). Automated Optical Navigation with Application to Galileo. Proceedings of 1980 AIAA/AAS Astrodynamics Conference, Danvers, Massachussetts.
Lee, D. J. and Kyle, T. A. (2004). Adaptive Sigma Point Filtering for State and Parameter Estimation. Proceedings of 2004 AIAA/AAS Astrodynamics Specialist Conference and Exhibit, Providence, Rhode Island.
Lemoine, F. G., Smith, D. E., Rowlands, D. D., Zuber, M. T., Neumann, G. A. and Chinn, D. S. (2001). An Improved Solution of the Gravity Field of Mars (GMM-2B) from Mars Global Surveyor. Journal of Geophysical Research, 106, 2335923376.
Ma, X., Fang, J. C. and Ning, X. L. (2013). An Overview of the Autonomous Navigation for a Gravity-Assist Interplanetary Spacecraft. Progress in Aerospace Sciences, 63, 5666.
Ma, X., Fang, J. C., Ning, X. L., Liu, G., Ge, S. S. (2015). Autonomous Celestial Navigation for a deep space probe approaching a target planet based on ephemeris correction. Proceedings of IMechE Part G: Journal of Aerospace Engineering, DOI: 10.1177/0954410015586841(in press).
Ma, X., Ning, X. L. and Fang, J. C. (2012) Analysis of Orbital Dynamic Equation in Navigation for a Mars Gravity-Assist Mission. Journal of Navigation, 65, 531548.
Martin-Mur, T. J., Bhaskaran, S., Cesarone, R. J. and McElrath, T. (2008). The next 25 Years of Deep Space Navigation. Proceedings of 2008 AAS Guidance Navigation and Control Conference, Breckenridge, CO.
Murrow, D. W. and Jacobson, R. A. (1988). Galilean Satellite Ephemeris Improvement using Galileo Tour Encounter Information. Proceedings of 1988 AIAA/AAS Astrodynamics Conference, Minneapolis, MN.
Ning, X. L. and Fang, J. C. (2008) Spacecraft autonomous navigation using unscented particle filter-based celestial/Doppler information fusion. Measurement Science and Technology, 19, 095203.
Ning, X. L., Ma, X., Peng, C., Quan, W. and Fang, J. C. (2012b). Analysis of Filtering Methods for Satellite Autonomous Orbit Determination using Celestial and Geomagnetic Measurement. Mathematical Problems in Engineering, doi:10.1155/ 2012/267875.
Ning, X. L., Ma, X., Zhang, X. L. and Wu, J. Y. (2012a) Autonomous Pulsars Navigation Method based on ASUKF for Mars Probe. Journal of Beijing University of Aeronautics and Astronautics, 38, 2227. (In Chinese)
Paluszek, M. A., Mueller, J. B. and Littman, M. G. (2010). Optical Navigation System. Proceedings of 2010 AIAA Infotech@ Aerospace, Atlanta, Georgia.
Payne, O. and Marrs, A. (2004). An Unscented Particle Filter for GMTI Tracking. Proceedings of 2004 IEEE Aerospace Conference, Big Sky, MT.
Riedel, J. E., Owen, W. M., Stuve, J. A., Synnott, S. P. and Vaughan, R. M. (1990) Optical Navigation During the Voyager Neptune Encounter. Proceedings of 1990 AIAA/AAS Astrodynamics Conference, Portland.
Rosenblatta, P., Laineyb, V., Le Maistrea, S., Martyc, J. C., Dehanta, V., Pätzold, M., Van Hoolst, T. and Häusler, B. (2008). Accurate Mars Express Orbits to Improve the Determination of the Mass and Ephemeris of the Martian Moons. Planetary and Space Science, 56, 10431053.
Rourke, K. H., Acton, C. H., Breckenridge, W. G., Campbell, J. K., Christensen, C. S., Donegan, A. J., Jerath, N., Mottinger, N. A., Rinker, G. C. and Winn, F. B. (1977). The Determination of the Interplanetary Orbits of Vikings 1 and 2. Proceedings of AIAA 15th Aerospace Sciences Meeting, Los Angeles, Calif.
Thornton, C. L. and Border, J. S. (2003). Radiometric Tracking Techniques for Deep-Space Navigation. John Wiley & Sons, Inc.
Vallado, D. A. (2007). Fundamentals of Astrodynamics and Applications. Springer.
van der Merwe, R., Doucet, A., de Freitas, N. and Wan, E. (2000). The Unscented Particle Filter. Proceedings of Neural Information Processing Systems 2000, Denver, Colorado.
Wang, D. Y., Huang, X. Y. and Guan, Y. F. (2008). GNC System Scheme for Lunar Soft Landing Spacecraft. Advances in Space Research. 42, 379385.
Wang, Y. D., Zheng, W., Sun, S. M. and Li, L. (2013) X-ray Pulsar-based Navigation System with the Errors in the Planetary Ephemerides for Earth-orbiting Satellite. Advances in Space Research. 51, 23942404.
Wood, K. S., Mowalski, M., Lovellette, M. N., Ray, P. S., Wolff, M. T., Yentis, D. J., Bandyopadhyay, R. M., Fewtrell, G., Fritz, G. M., Wood, D. and Hertz, P. L. (2001). The Unconventional Stellar Aspect (USA) Experiment on ARGOS. Proceedings of AIAA Space 2001 Conference and Exposition, Albuquerque, NM.
Wu, W. R., Wang, D. Y. and Ning, X. L. (2011) Principles and Technologies of Autonomous Navigation For a Deep Space Explorer. China Astronautic Publishing House. (In Chinese)
Yim, J. R., Crassidis, J. L. and Junkins, J. L. (2000) Autonomous Orbit Navigation of Interplanetary Spacecraft. Proceedings of 2000 AIAA/AAS Astrodynamics Specialist Conference, Denver, CO.
Zhou, Y. F., Leung, H. and Blanchette, M. (1999). Sensor Alignment with Earth-centered Earth-fixed (ECEF) Coordinate System. IEEE Transactions on Aerospace and Electronic Systems, 35, 410418.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed