Skip to main content Accessibility help

Performance Evaluation of Single-frequency Precise Point Positioning with GPS, GLONASS, BeiDou and Galileo

  • Lin Pan (a1) (a2), Xiaohong Zhang (a1) (a2), Jingnan Liu (a1), Xingxing Li (a1) (a3) and Xin Li (a1)...


In view that most Global Navigation Satellite System (GNSS) users are still using single-frequency receivers due to the low costs, single-frequency Precise Point Positioning (PPP) has been attracting increasing attention in the GNSS community. For a long period, single-frequency PPP technology has mainly relied on the Global Positioning System (GPS). With the recent revitalisation of the Russian GLONASS constellation and two newly emerging constellations, BeiDou and Galileo, it is now feasible to investigate the performance of Four-Constellation integrated Single-Frequency PPP (FCSF-PPP) with GPS, GLONASS, BeiDou and Galileo measurements. In this study, a FCSF-PPP model is presented to simultaneously process observations from all four GNSS constellations. Datasets collected at 47 globally distributed four-system Multi-GNSS Experiment (MGEX) stations on seven consecutive days and a kinematic experimental dataset are employed to fully assess the performance of FCSF-PPP. The FCSF-PPP solutions are compared to GPS-only and combined GPS/GLONASS single-frequency PPP solutions. The results indicate that the positioning performance is significantly improved by integrating multi-constellation signals.


Corresponding author


Hide All
Boehm, J., Niell, A., Tregoning, P. and Schuh, H. (2006). Global Mapping Function (GMF): a new empirical mapping function based on numerical weather model data. Geophysical Research Letters, 33, L07304, DOI: 10.1029/2005GL025546.
Cai, C., Gao, Y., Pan, L. and Zhu, J. (2015). Precise point positioning with quad-constellations: GPS, BeiDou, GLONASS and Galileo. Advances in Space Research, 56(1), 133143, DOI: 10.1016/j.asr.2015.04.001.
Cai, C., Liu, Z. and Luo, X. (2013). Single-frequency ionosphere-free precise point positioning using combined GPS and GLONASS observations. Journal of Navigation, 66(3), 417434, DOI: 10.1017/S0373463313000039.
Davis, J.L., Herring, T.A., Shapiro, I.I., Rogers, A.E.E. and Elgered, G. (1985). Geodesy by radio interferometry: effects of atmospheric modeling errors on estimates of baseline length. Radio Science, 20(6), 15931607, DOI: 10.1029/RS020i006p01593.
Gerdan, G.P. (1995). A comparison of four methods of weighting double difference pseudorange measurements. The Australian Surveyor, 40(4), 6066, DOI: 10.1080/00050334.1995.10558564.
Ghoddousi-Fard, R. and Dare, P. (2006). Online GPS processing services: an initial study. GPS Solutions, 10(1), 1220, DOI: 10.1007/s10291-005-0147-5.
Guo, F., Zhang, X. and Wang, J. (2015). Timing group delay and differential code bias corrections for BeiDou positioning. Journal of Geodesy, 89(5), 427445, DOI: 10.1007/s00190-015-0788-2.
Héroux, P. and Kouba, J. (1995). GPS precise point positioning with a difference. In: Geomatics '95, Ottawa, Ontario, Canada, June 13–15, 1995.
Hauschild, A., Montenbruck, O., Sleewaegen, J.M., Huisman, L. and Teunissen, P.J.G. (2012). Characterization of Compass M-1 signals. GPS Solutions, 16(1), 117126, DOI: 10.1007/s10291-011-0210-3.
Kouba, J. and Héroux, P. (2001). Precise point positioning using IGS orbit and clock products. GPS Solutions, 5(2), 1228, DOI: 10.1007/PL00012883.
Le, A.Q. and Tiberius, C. (2007). Single-frequency precise point positioning with optimal filtering. GPS Solutions, 11(1), 6169, DOI: 10.1007/s10291-006-0033-9.
Li, X., Zhang, X. and Ge, M. (2011). Regional reference network augmented precise point positioning for instantaneous ambiguity resolution. Journal of Geodesy, 85(3), 151158, DOI: 10.1007/s00190-010-0424-0.
Li, X., Ge, M., Zhang, H. and Wickert, J. (2013a). A method for improving uncalibrated phase delay estimation and ambiguity-?xing in real-time precise point positioning. Journal of Geodesy, 87(5), 405416, DOI: 10.1007/s00190-013-0611-x.
Li, X., Ge, M., Zhang, H., Nischan, T. and Wickert, J. (2013b). The GFZ real-time GNSS precise positioning service system and its adaption for COMPASS. Advances in Space Research, 51(6), 10081018, DOI: 10.1016/j.asr.2012.06.025.
Li, X., Zhang, X., Ren, X., Fritsche, M., Wickert, J. and Schuh, H. (2015a). Precise positioning with current multi-constellation global navigation satellite systems: GPS, GLONASS, Galileo and BeiDou. Scientific Reports, 5, 8328, DOI: 10.1038/srep08328.
Li, X., Ge, M., Dai, X., Ren, X., Fritsche, M., Wickert, J. and Schuh, H. (2015b). Accuracy and reliability of multi-GNSS real-time precise positioning: GPS, GLONASS, BeiDou, and Galileo. Journal of Geodesy, 89(6), 607635, DOI: 10.1007/s00190-015-0802-8.
Montenbruck, O. (2003). Kinematic GPS positioning of LEO satellites using ionosphere-free single frequency measurements. Aerospace Science and Technology, 7(5), 396405, DOI: 10.1016/S1270-9638(03)00034-8.
Montenbruck, O., Hauschild, A., Steigenberger, P., Hugentobler, U., Teunissen, P. and Nakamura, S. (2013). Initial assessment of the COMPASS/BeiDou-2 regional navigation satellite system. GPS Solutions, 17(2), 211222, DOI: 10.1007/s10291-012-0272-x.
Øvstedal, O. (2002). Absolute positioning with single-frequency GPS receivers. GPS Solutions, 5(4), 3344, DOI: 10.1007/PL00012910.
Pan, L., Cai, C., Santerre, R. and Zhu, J. (2014). Combined GPS/GLONASS precise point positioning with fixed GPS ambiguities. Sensors, 14(9), 1753017547, DOI: 10.3390/s140917530.
Rizos, C., Montenbruck, O., Weber, R., Weber, G., Neilan, R. and Hugentobler, U. (2013). The IGS MGEX experiment as a milestone for a comprehensive multi-GNSS service. Proceedings of the ION 2013 Pacific PNT Meeting (ION-PNT-2013), April 23–25, 2013, Honolulu, Hawaii, USA, 289–295.
Saastamoinen, J. (1972). Atmospheric correction for the troposphere and stratosphere in radio ranging of satellites. The Use of Artificial Satellites for Geodesy, American Geophysics Union, Geophys. Monogr. Ser., 15, 247251.
Steigenberger, P., Hugentobler, U., Loyer, S., Perosanz, F., Prange, L., Dach, R., Uhlemann, M., Gendt, G. and Montenbruck, O. (2015). Galileo orbit and clock quality of the IGS multi-GNSS experiment. Advances in Space Research, 55(1), 269281, DOI: 10.1016/j.asr.2014.06.030.
Sterle, O., Stopar, B. and Prešeren, P.P. (2015). Single-frequency precise point positioning: an analytical approach. Journal of Geodesy, 89(8), 793810, DOI: 10.1007/s00190-015-0816-2.
Wanninger, L. and Beer, S. (2015). BeiDou satellite-induced code pseudorange variations: diagnosis and therapy. GPS Solutions, 19(4), 639648, DOI: 10.1007/s10291-014-0423-3.
Yunck, T.P. (1996). Orbit determination. In: Parkinson, B.W., Spilker, J.J. (eds). Global positioning system – theory and applications. AIAA, Washington D.C., USA.
Zhao, Q., Guo, J., Li, M., Qu, L., Hu, Z., Shi, C. and Liu, J. (2013). Initial results of precise orbit and clock determination for COMPASS navigation satellite system. Journal of Geodesy, 87(5), 475486, DOI: 10.1007/s00190-013-0622-7.
Zumberge, J.F., Heflin, M.B., Jefferson, D.C., Watkins, M.M. and Webb, F.H. (1997). Precise point positioning for the efficient and robust analysis of GPS data from large networks. Journal of Geophysical Research, 102(B3), 50055017, DOI: 10.1029/96JB03860.


Related content

Powered by UNSILO

Performance Evaluation of Single-frequency Precise Point Positioning with GPS, GLONASS, BeiDou and Galileo

  • Lin Pan (a1) (a2), Xiaohong Zhang (a1) (a2), Jingnan Liu (a1), Xingxing Li (a1) (a3) and Xin Li (a1)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.